Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
Основной объект изучения алгебраической геометрии — алгебраические многообразия, то есть геометрические объекты, заданные как множества решений систем алгебраических уравнений. Наиболее хорошо изучены алгебраические кривые: прямые, конические сечения, кубики (такие как эллиптическая кривая) и кривые более высоких порядков (примеры таких кривых — лемнискаты). Базовые вопросы теории алгебраических кривых касаются изучения «специальных» точек на кривой, таких как особые точки или точки перегиба. Более продвинутые вопросы касаются топологии кривой и отношений между кривыми, заданными дифференциальными уравнениями.
Современная алгебраическая геометрия имеет множественные взаимосвязи с самыми различными областями математики, такими как комплексный анализ, топология или теория чисел. Изучение конкретных систем уравнений с несколькими переменными привело к пониманию важности исследования общих внутренних свойств множеств решений произвольной системы алгебраических уравнений и, как следствие, к глубоким результатам во многих разделах математики.
В XX веке алгебраическая геометрия разделилась на несколько (взаимосвязанных) дисциплин:
На пересечении алгебраической геометрии и компьютерной алгебры лежит вычислительная алгебраическая геометрия. Её основная задача — создание алгоритмов и программного обеспечения для изучения свойств явно заданных алгебраических многообразий.Основной поток исследований в алгебраической геометрии XX века шёл при активном использовании понятий общей алгебры, с акцентом на «внутренних» свойствах алгебраических многообразий, не зависящих от конкретного способа вложения многообразия в некоторое пространство. Ключевым её достижением стала теория схем Александра Гротендика, позволившая применить теорию пучков к исследованию алгебраических многообразий методами, схожими с изучением дифференцируемых и комплексных многообразий. Это привело к расширению понятия точки: в классической алгебраической геометрии точку аффинного многообразия можно было определить как максимальный идеал координатного кольца, тогда как все точки соответствующей аффинной схемы являются простыми идеалами данного кольца. Точку такой схемы можно рассматривать и как обычную точку, и как подмногообразие, что позволило унифицировать язык и инструменты классической алгебраической геометрии. Доказательство Великой теоремы Ферма Эндрю Уайлсом стало одним из ярчайших примеров мощи такого подхода.
Источник: Википедия
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать
Карту слов. Я отлично
умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: стереотипизированный — это что-то нейтральное, положительное или отрицательное?
Но как этот слепой человек вообще ориентируется в абстрактных пространствах алгебраической геометрии и так легко манипулирует плоскостями, сферами и объёмами, хотя даже не видит их?
Вавилоняне к тому же рассчитали математические таблицы и разработали алгебраическую геометрию большой практической пользы, а также, возможно, изобрели солнечные часы, считающиеся древнейшим среди известных инструментом для слежения за течением времени.
Важная проблема алгебраической геометрии.