1. книги
  2. Публицистика
  3. Александр Матанцев

Приоритет отечественной науки по влиянию солнечных вспышек в полетах на Луну и Марс

Александр Матанцев
Обложка книги

Показан наш приоритет по исследованиям солнечных вспышек и радиационных зон космическими аппаратами (КА) типа «Космос», «Зонд», «Прогресс», «Протон» и др. Показаны способы выявления солнечных вспышек разных классов Х, М и С и влияние в полетах к Луне и Марсу. Сделаны расчеты при разной толщине защиты. Вычислена доза облучений на разных участках полета к Луне и Марсу, показано, что она смертельна при наличии солнечных вспышек. Можно выжить, создавая радиационные убежища на КА или магнитный кокон.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Приоритет отечественной науки по влиянию солнечных вспышек в полетах на Луну и Марс» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Введение 4. Результаты исследований излучений советскими спутниками и КА

В результате исследований советскими искусственными спутниками серии «Космос», автоматическими станциями серии «Зонд», космическими станциями серии «Протон», искусственными спутников земли серии «Прогресс», «Метеор», «Молния», АМС серии «Марс» и «Венера», а также советским «Луноходом-1» на поверхности Луны — в период с 1961 по 1972 годы, получены следующие впечатляющие результаты:

— зарегистрировано значительное (превышающее фон примерно в 100 тысяч раз) и продолжительное возрастание интенсивности солнечных корпускулярных потоков в областях полетов к Луне, Марсу и Венере, где отсутствует или минимально магнитное поле, и отсутствует атмосфера; в пересчете на эквивалентную дозу — это облучение порядка 10 — 100 Зв, что абсолютно смертельно; именно поэтому советские ученые выступили с заявлением о невозможности полетов к Луне в тех условиях 60-х и 70-х годов; когда еще не была создана необходимая защита;

— благодаря длительным измерениям с помощью спутников «Космос» определены возможные дозы радиации на высотах около 300 км в зависимости от условий геомагнитной и солнечной активности; на основании этих данных была доказана безопасность в радиационном отношении полетов для МКС и для космических кораблей «Восток» и «Восход»;

результаты измерений позволили получить детальную картину планетарного распределения радиации и создать первые дозиметрические карты для малых высот внутренней и внешней зон радиационного пояса;

— первым советским спутником, целиком посвященным исследованию этой проблемы, стал «Космос-3», а затем аналогичный ему «Космос-5», датчики спутников могли эффективно регистрировать потоки с энергией от 100 эВ до 10 кэВ и электроны с энергиями от 40 эВ до 50 кэВ;

кроме корпускулярных датчиков на спутниках были установлены счетчики Гейгера, экранированные свинцом; счетчики регистрировали протоны с энергией, превышающей 50 МэВ, рентгеновское и гамма-излучение с энергией, превышающей 100 кэВ;

— к первой группе относятся протоны внутренней зоны радиации с энергией около 50 МэВ, регистрируемые потоки которых составляли примерно 104 частиц · см-2 · с-1;

— вторая группа — электроны с энергией около 100 кэВ, составляющие основную компоненту внутренней и внешней зоны радиационного пояса; их суммарные потоки достигали значений 20 · 107 частиц на см-2 · с-1;

— третья группа — электроны средних энергий (около 15 кэВ), заметные интенсивности которых наблюдались лишь выше 500 км и на высоких широтах;

— хотя поток коротковолнового излучения Солнца составляет малую часть общего потока солнечного излучения (весь поток короче 0,3 нм составляет около 1,5% полного потока, а поток излучения, скажем, короче 10 нм — еще в 104—105 раз меньше), оно оказывает существенное влияние на земную атмосферу, вызывает распадение молекул на атомы, фотохимические реакции, ведущие к образованию новых молекул, ионизирует молекулы и атомы; коротковолновое излучение Солнца по существу контролирует состав и плотность верхней атмосферы Земли, ее температурный режим и протяженность, что в свою очередь влияет на приток тепла к нижним слоям атмосферы и уход тепла от Земли, т. е. на климат Земли;

— в области спектра короче 0,3 нм расположены характерные спектральные линии ряда элементов, входящих в состав фотосферы Солнца; более коротковолновое ультрафиолетовое и рентгеновское излучения исходят из хромосферы и короны Солнца.

— выявлены медленные вариации, связанные с 11-летним циклом солнечной активности, более быстрые вариации в масштабе солнечных суток, земных суток и часов и совсем быстрые в масштабе минут и секунд;

— есть многочисленные данные, указывающие на связь многих процессов на Земле с периодическими изменениями солнечной активности, коротковолновое излучение Солнца стало одним из основных объектов экспериментов, выполняемых на спутниках «Космос»;

— одно из самых замечательных проявлений солнечной активности — катастрофические процессы на Солнце, получившие название солнечных вспышек; обнаружено, что иногда в активных областях Солнца, связанных с магнитными пятнами, внезапно, обычно в течение нескольких секунд, сильно возрастает яркость участка поверхности Солнца, достигающего в сильных вспышках размера до 3 · 109 км2; с развитием радиоастрономии было установлено, что эти оптические вспышки, как правило, сопровождаются мощными всплесками радиоизлучения в диапазоне от сантиметровых до дека-метровых волн;

— выяснилось, что оптические и радиовспышки сопровождаются огромным (до нескольких тысяч раз) усилением рентгеновского излучения Солнца, а также появлением очень жесткого излучения вплоть до нескольких сотен килоэлектронвольт; во время вспышек возникают потоки ускоренных частиц — электронов и тяжелых ядер с энергиями от десятков килоэлектронвольт до релятивистских — и выбросы сгустков плазмы;

— оказалось, что вспышки очень сложное, комплексное явление; они оказывают весьма сильное воздействие на Землю; когда до Земли доходит рентгеновское излучение, нарушается состояние ионосферы, возникают провалы радиосвязи и ряд геофизических эффектов;

— за время от одного часа до нескольких десятков часов частицы и плазменные сгустки от солнечных вспышек достигают Земли; частицы несут с собой радиационную опасность для космонавтов; плазменные сгустки нарушают магнитное поле планеты, вызывая магнитные бури;

— продолжительность солнечной вспышки колеблется от нескольких минут до десятков минут, а иногда и часов;

— за время сильной вспышки выделяется энергия до 1031—1032 эрг, что эквивалентно энергии 109—1010 атомных бомб; половина этой энергии выделяется в виде электромагнитной энергии — от жесткого рентгена до декаметрового радиодиапазона, половина — в виде энергии ускоренных частиц;

— объем солнечной радиации, захватываемый сильной вспышкой, составляет до 1029 см3, отсюда следует, что плотность энергии в области вспышки достигает 103 эрг/см3; однако плотность энергии в хромосфере около 3 эрг/см3, следовательно, вспышки возникают за счет дополнительного источника энергии; этим источником служит энергия магнитного поля в солнечной атмосфере [35];

— как показали исследования академика А. Б. Северного, во время вспышки происходит перестройка локального магнитного поля, которая сопровождается высвобождением некоторого количества магнитной энергии;

— исследования показали, что при спокойном Солнце интенсивность излучения в самом коротковолновом диапазоне 0,15—0,4 нм практически равна нулю и резко возрастает в момент микровсплеска рентгеновского излучения; излучение в диапазоне 0,44—0,65 нм меняется в меньших пределах, излучение же в мягком диапазоне (0,8—1,4 нм) в этих условиях меняется несущественно; возрастание интенсивности происходило почти одновременно в областях 0,15—0,4 и 0,44—0,65 нм;

— измерения по рентгеновскому заходу за лимб высота рентгеновской активной области оказалась равной 20—80 тыс. км и высота рентгеновской вспышки 20—25 тыс. км; область рентгеновской вспышки обычно имела волокнистую структуру с угловым диаметром волокон около 10 угловых секунд, сходную со структурой областей оптических вспышек;

— оптические вспышки располагались как раз над так называемыми активными областями нашего светила с характерными группами пятен, наблюдаемыми с помощью наземных оптических средств; интересно, что в ряде случаев выявлено наличие у одной вспышки двух центров, примерно одинаковых по яркости; расстояние между ними составляло около 6 угловых минут.

— наличие в начальной стадии направленных потоков ускоренных электронов в области вспышки нашло непосредственное экспериментальное подтверждение; при этом поступление ускоренных электронов длится в больших вспышках в течение нескольких минут;

— полученные данные находятся в согласии с развитой С. И. Сыроватским теоретической моделью солнечных вспышек; при перестройке магнитного поля во времени в короне появляется электрическое поле, вызывающее дрейф плазмы, — возникает цилиндрическая ударная волна, сходящаяся к нейтральной линии магнитного поля; начинает течь сильный электрический ток, нагревающий плазму до температуры, близкой к 10 млн. градусов, и возникает интенсивное мягкое рентгеновское излучение; дрейф плазмы влечет за собой появление турбулентности, что сопровождается уменьшением проводимости плазмы — происходит разрыв токового слоя и возникает сильный градиент электрического поля; в результате появляются ускоренные потоки частиц — электронов и протонов;

— в результате полета «Космоса-321» были получены очень интересные и важные сведения о механизмах магнитных бурь в полярных областях; во время особенно интенсивной бури 8—10 марта 1970 г. были измерены эффекты полярных электроструй; эти данные были затем использованы для изучения проводимости земного шара;

— новые перспективы в изучении космических лучей из удаленных областей Вселенной открывает зародившаяся сравнительно недавно гамма-астрономия; если говорить о гамма-лучах с энергиями, большими 50 МэВ, то они могут генерироваться только космическими лучами (ГКЛ);

— интенсивность источников гамма-излучения меняется со временем;

исследованная область неба интересна тем, что расположена в районе полюса Галактики, где источниками гамма-квантов могут быть скорее всего внегалактические объекты;

— наблюдения за интенсивностью аннигиляционного гамма-излучения с энергией 0,511 МэВ проводились на спутнике «Космос-135» в периоды ежегодных метеорных потоков Геминиды, Урсиды и Квадрантиды в зиму 1966/67 г; измерялись интенсивность линии 0,511 МэВ, интенсивность электронов с энергией, большей 1,5 МэВ, и протонов с энергией, большей 27 МэВ;

— сравнение результатов измерений с данными по солнечной и геомагнитной активности и космическим лучам в период наблюдений показало, что периоды с 10 по 20 декабря 1966 г. и с 1 по 15 января 1967 г., которые резко отличаются друг от друга по наблюдаемой интенсивности гамма-квантов с энергией 0,511 МэВ, по солнечной и геомагнитной активности очень сходны;

— проводились исследования, направленные на решение задач обеспечения радиационной безопасности экипажей и оборудования при длительных полетах; главным здесь было экспериментальное изучение нового перспективного вида радиационной защиты от воздействия заряженных частиц — электростатического; он основан на создании и поддержании около защищаемых отсеков электростатического поля, которое отклоняет потоки заряженных частиц и снижает уровень радиации внутри защищаемого объема до допустимых пределов;

подтверждена возможность автономного функционирования электростатической защиты в радиационных поясах Земли [35].

Подведем итоги. Самый впечатляющий, главный результат — это совершенно очевидный приоритет в мире советской науки по изучению ионизирующих излучений, солнечных вспышек, поясов Ван Аллена и космических лучей в период 60-х и 70-х годов.

Второй главный мировой результат, полученный советскими исследованиями — это выявление смертельной радиационной дозы облучения от солнечных вспышек.

Третий главный мировой результат, полученный советскими исследованиями — это получение радиационной дозы облучения менее предельно-допустимой (ПДД) в зонах на высоте от Земли до 300 — 400 км, где летают МКС, «Восток», «Восход».

Четвертый главный мировой результат, полученный советскими исследованиями — это получение радиационной дозы облучения в зонах Ван Аллена — от допустимых до смертельных в зависимости от времени пролета зон и защиты.

Американские исследователи тщательно скрывали результаты своих исследований космоса. Известны лишь в последнее десятилетие отдельные результаты. Например, один из авторитетных сотрудников НАСА Билл Модлин в своей работе «Перспективы межзвездных путешествий» откровенно сообщал: «Солнечные вспышки могут выбрасывать ГэВ протоны в том же энергетическом диапазоне, что и большинство космических частиц, но гораздо более интенсивные. Увеличение их энергии при усиленной радиации представляет особую опасность, поскольку ГэВ протоны проникают сквозь несколько метров защиты [36]. Солнечные (или звездные) вспышки с выбросом протонов — это периодически возникающая очень серьезная опасность в межпланетном пространстве, которая обеспечивает дозу радиации в сотни тысяч рентген за несколько часов на расстоянии от Солнца до Земли. Такая доза является смертельной и в миллионы раз превышает допустимую. Смерть может наступить уже после 500 рентген за короткий промежуток времени». «Космические частицы опасны, они исходят со всех сторон и требуют, как минимум двух метров плотного экрана вокруг любых живых организмов». А ведь космические капсулы, которые по сей день демонстрирует НАСА, имели чуть более 4 м в диаметре. Но, очевидно, ни руководство НАСА, ни посланные им на Луну астронавты книжек своего коллеги не читали и, находясь в блаженном неведении, чудом (вернее, только в сказочных описаниях) преодолели все смертельные дозы по дороге к звездам.

Исследователь Александр Щербаков [36] делает следующий вывод: в человеке очень много воды (H2O) и если большая доза излучения проникнет в организм, то она может разрушить молекулы воды (например, атом водорода превратился в ион водорода — молекула расформировалась, став HO и ионом H — цепная реакция не заставит себя долго ждать). Разрушение молекулы воды приведет к разрушению всего организма человека.

Итак, мы приходим к такому результату: приоритетные исследования советских ученых по ионизирующим излучениям от солнечных вспышек, космических лучей и радиационных зон Ван Аллена позволили уже в начале 60-х годов, задолго до планируемых запусков Аполлонов, заявить о том, что при существующем тогда уровне защиты КА и астронавтов, полеты к Луне и Марсу невозможны.

Официально было заявлено следующее: «В связи с большим количеством вспышек на Солнце в СССР облёт Луны с людьми в корабле 7К-Л1 с 08.12.1968 и последующие отменены. Запускать корабль 7К-Л1 на ракете Протон к Луне продолжили в беспилотном режиме с биообъектами на борту [5]. Хотя Зонд 7 и Зонд 8 успешно облетели вокруг Луны с биологическими объектами, полётов с людьми не было, так как они могли просто погибнуть из-за вспышек на Солнце». Эта информация опубликована в работе [5] 1 марта 2019 года. Для выявления воздействия солнечных вспышек, в советском автоматическом КА был размещен фантом человека. Наш фантом облетел Луну на аппарате «Зонд-7», в результате были получены данные о распределении доз в теле космонавта и их физические характеристики при полете на трассе Земля — Луна — Земля. Специалисты пришли к выводу: «При отсутствии солнечных вспышек радиация на трассе не страшна».

О книге

Автор: Александр Матанцев

Жанры и теги: Публицистика

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Приоритет отечественной науки по влиянию солнечных вспышек в полетах на Луну и Марс» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я