Монография посвящена результатам авторских проектных разработок и исследований объектов духовной жизни человека в гармонии архитектуры и акустики храмовых, театральных, спортивных сооружений: от известного нам Кромлеха Стоунхенджа в английском графстве Солсбери (третье тысячелетие до н.э.), театральной площадки в Кноссе на острове Крит (XV век до н.э.), амфитеатров на холмах Афин (VI век до н.э.), театра в Пальмире (Сирия) до Государственной академической капеллы, второй сцены Мариинского оперного театра и крупнейшего стадиона «Зенит-Арена» в Северной Пальмире (Санкт-Петербург, Россия).
Приведённый ознакомительный фрагмент книги Гармония архитектуры и акустики предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
2. Реконструкция капеллы в СПБ (реконструкция концертного зала Государственной Академической Капеллы в Санкт-Петербурге)
В этой главе позволю себе представить вам, может быть, поучительный пример реализуемых простых решений акустических проблем при реконструкции или реставрации известнейших объектов, одним из которых является Капелла в Санкт-Петербурге (здание построено в XIX веке).
Рисунок 2.1
Здание Государственной Академической Капеллы в Санкт-Петербурге
Время неумолимо. Исторические здания стареют. Количество уникальных зданий, требующих акустической реконструкции очень велико и возрастает.
Материал данной главы, я надеюсь, поможет не допустить грубых ошибок, казалось бы — в простейших случаях теплотехнической и противопожарной реконструкции чердачного перекрытия (любых иных частей исторических зданий) над известным зрительным залом, способных повредить или безвозвратно уничтожить такие прекрасные духовные качества театра, которые создаёт для нас и на многие века с божьей помощью великий творец-архитектор.
Дело в том, что из-за больших временны´х промежутков между продуманным, а также талантливым, воплощением архитектурно-акустических идей в объекте и моментом его реконструкции всегда существует, в силу различных причин, опасность утраты либо знания, либо понимания особенностей этого объекта. Данное обстоятельство, как отмечено ранее, может нанести иногда непоправимый ущерб, связанный с потерей акустических качеств объекта реконструкции.
Речь идёт о знании и о понимании акустических законов всеми реставраторами, не только о конструктивных или архитектурных, но и об акустических особенностях концертных залов с уникальной акустикой.
Поэтому мною было решено рассмотреть и представить вниманию читателя весьма характерный в этом плане пример процесса реконструкции одного из известнейших в мире музыки концертных залов.
Рассмотрим конкретный объект: запроектированный в 1886 году архитектором Л.Бенуа концертный зал Государственной Академической Капеллы в Санкт-Петербурге (набережная реки Мойки, дом 20, рисунок 2.1).
Реконструкция этого концертного зала заканчивалась в течение 2005 года, примерно через 120 лет после ввода в эксплуатацию. За период в 120 лет основой для реконструкции и реставрации оставались, конечно: во-первых, само здание Государственной Академической Капеллы, а во-вторых — чертежи здания Государственной Академической Капеллы.
Перед реконструкцией и реставрацией были проведены предварительные обследования, в результате которых — разработаны достаточно обоснованные правилами строительной техники и технологии конструктивные мероприятия. Разработана также проектная документация на реконструкцию здания и концертного зала Государственной Академической Капеллы (далее — концертного зала Капеллы).
Первоначально администрацией мне поручались только теплоэнергетические обследования концертного зала Капеллы. Однако на первом (ознакомительном) этапе теплоэнергетических обследований оказалось, что мои выводы по теплоэнергетическим обследованиям непосредственно влияют на решения по акустике концертного зала Капеллы (далее это будет подробно доказано).
Поэтому программа обследования была существенно расширена с включением позиции по акустическим обследованиям. Ставилась задача: оценить влияние на акустику концертного зала Капеллы теплоэнергетических мероприятий и мероприятий по пожарной безопасности, представленных подрядчиком в его проекте реконструкции.
Акустическое и теплоэнергетическое обследования конструкции чердачного перекрытия и объёмно-планировочных элементов концертного зала Капеллы произведено мною в январе 2005года.
В процессе обследования чердачного перекрытия (перекрытия над концертным залом) и объёмно-планировочных элементов концертного зала Капеллы рассмотрены следующие документы:
1 Чертежи здания концертного зала Капеллы, выполненные архитектором Л.Бенуа в 1886 году и архитектором М.Гейслером (при восстановлении здания после пожара) в 1895 году).
2 Акустический Паспорт концертного зала Капеллы, составленный специалистами-акустиками из МГУ и ГУП МНИИП объектов культуры, отдыха, спорта и здравоохранения (доцент кафедры акустики МГУ, член Экспертного Совета по органостроению Международного союза музыкальных деятелей, кандидат физико-математических наук П.Кравчук и заведующий лабораторией акустики ГУП МНИИП, кандидат технических наук В.Сухов).
3 Обмерочные чертежи чердачного перекрытия здания концертного зала Капеллы, выполненные ООО «Гипротеатр» с указанием дефектов в исторических конструкциях чердачного перекрытия.
4 Отчет о техническом обследовании строительных конструкций чердачного перекрытия здания концертного зала Капеллы с выдачей проектных решений по его ремонту, выполненный ООО «Гипротеатр».
5 Предписание №2–973 от 16 июня 2004г. Государственного Учреждения «Дирекция заказчика по ремонтно-реставрационным работам на памятниках истории и культуры».
2.1. Характеристика исторических конструкций над концертным залом
По чертежам здания концертного зала Капеллы, разработанным архитекторами Л. Бенуа и М. Гейслером, по современным обмерочным чертежам чердачного перекрытия, разработанным ООО «Гипротеатр», а также при визуальном осмотре конструкций в натурных условиях мной было установлено:
1 Чердачное перекрытие концертного зала Капеллы площадью 520м2 выполнено по металлическим стропильным фермам. Покрытие зала опирается на верхний пояс ферм. Чердачное перекрытие опирается на нижний пояс ферм. Нижняя часть чердачного перекрытия из досок толщиной 40мм кессонирована (размеры в плане каждого кессона преимущественно 1680х1550мм, глубина кессонов 360мм, количество кессонов — 126) и живописно окрашена со стороны концертного зала.
2 В объёме чердака, над кессонами имеется восемнадцать воздушных полостей (резонаторов Бенуа) шириной от 930 до 1080мм, длиной 23000мм (на всю длину зала) и высотой 270мм (рисунок 2.2).
3 Выше указанных воздушных полостей (резонаторов Бенуа) был устроен настил из досок толщиной 50мм. Непосредственно на настиле до начала ремонтных работ находилась известково-гипсо-песчаная стяжка толщиной 100мм.
Во время ремонтных работ эта стяжка была полностью разрушена (!!!!) и в качестве строительных отходов удалена с объекта.
4 В объеме чердака, по его периметру, находился бывший жаровой канал, а ныне — это вентиляционный воздуховод сечением 1820х750мм с вентиляционными решетками, через которые в чердачное пространство может подаваться нагретый воздух. Нагрев воздуха производился и будет производиться с помощью специального оборудования, находящегося в пространстве под сценой концертного зала.
2.2. Основные акустические параметры концертного зала Капеллы
В соответствии с Акустическим Паспортом Капеллы концертный зал имеет объем 6000м3 и 800 мест для публики.
Рисунок 2.2
К чердачной поверхности потолка зала жестко прикреплены (вновь «открытые» при реконструкции и спасенные автором) низкочастотные резонаторы
Удельный объем концертного зала равен 7.5м3 на 1 зрительское место.
Измеренное время реверберации равно 1.75 сек на частотах 500 и 1000 Гц в пересчете на заполненный зал.
Рекомендованное международными стандартами время реверберации равно 2.1 сек для органных концертов и для хорового пения. Полученное во время измерений время реверберации, равное 1.75 сек может быть принято как компромиссное для залов, в которых производятся симфонические концерты.
Для полноценного звучания хорового исполнения и органной музыки разработчиками Акустического Паспорта Капеллы рекомендовано уменьшить количество мест в концертном зале и приблизить число мест к первоначальному, предусмотренному проектом Л.Бенуа в 1886 году.
2.3. Предложение института ООО «Гипротеатр» по проекту реконструкции
Проектное решение по ремонту концертного зала Капеллы, предложенное в 2005 году институтом ООО «Гипротеатр» (через 110 лет после пожара) недостаточно обоснованно включало замену исторической известково-гипсо-песчаной стяжки толщиной 100мм на слой эффективного утеплителя Epaterm толщиной 168мм!!!
В этом же проектном решении на слой эффективного утеплителя Epaterm по предложению ООО «Гипротеатр» необходимо было бы уложить цементную стяжку толщиной 20мм (!!!!).
Автор был приглашен заказчиком (Государственное Учреждение «Дирекция заказчика по ремонтно-реставрационным работам на памятниках истории и культуры») в качестве эксперта для оценки данного проекта реконструкции, разработанного ООО «Гипротеатр».
С экспертной точки зрения возможности сохранения при ремонте чердачного перекрытия уникальной акустики концертного зала Капеллы такое проектное решение ООО «Гипротеатр» (о замене исторической известково-гипсо-песчаной стяжки толщиной 100мм на слой эффективного утеплителя Epaterm толщиной 168мм с последующим нанесением стяжки толщиной 20мм), конечно, ни в коем случае нельзя было допустить к реализации — это было бы опасно для уникальной акустики Капеллы.
Предварительно заметим, что предложенная ООО «Гипротеатр» стяжка на слое утеплителя толщиной 168мм становилась бы мощным виброгасителем всех колебаний потолка концертного зала. Далее будет показано, что опрометчивое размещение на потолке концертного зала мощного виброгасителя, в свою очередь, имело бы катастрофические последствия для акустики этого уникального концертного зала……..
Архитектор М. Гейслер (при восстановлении здания после пожара в 1895 году) прекрасно это понимал и не допустил какого-либо непродуманного решения в части обязательного сохранения уникальных акустических качеств концертного зала, заложенных в проекте и в реальном здании концертного зала Капеллы в Санкт-Петербурге архитектором Л.Бенуа.
2.4. Главные акустические и теплоэнергетические идеи Л.Бенуа, реализованные в конце XIX века
Главные акустические и теплоэнергетические идеи конструкции чердачного перекрытия концертного зала Капеллы, заложенные в проекте 1886 года архитектором Л.Бенуа и бережно сохранённые архитектором М.Гейслером в 1995 году, я полагаю, заключены в следующем:
Потолок — это рефлектор (отражатель) звука.
Потолок — это отражатель звука, который направляет к слушателям наиболее полезные первые отражения звука с запаздыванием по отношению к прямому звуку T=24–55мсек. Запаздывание отражений от потолка c T=24–55мсек в сочетании с запаздыванием звука от стен зала с T=7–30мсек обеспечивали наилучшую структуру первых отражений, которая создала славу акустике концертного зала, как одной из лучших в Европе.
Функция оптимальных первых отражений от потолка сформирована выбором высоты зала, равной в среднем 14.5м. Наилучшая структура первых отражений для зала в целом (и от стен и от потолка) сформирована выбором соотношения длины, ширины, высоты зала более 1.0, но менее 2.0 и тем, что продольные стены зала не параллельны. Не параллельные продольные стены позволяют успешно избежать ряда акустических дефектов, например, возникновения «порхающего эхо» и стоячих волн, т.е. весьма многократных нежелательных отражений от параллельных стен.
Потолок — это рассеиватель звука.
Потолок — это рассеиватель звука для частот, на которых длина волны звука соизмерима с размерами рассеивателей. Рассеивание позволяет наполнить звуком высокого качества практически весь объём зала, избегая нежелательных концентраций, а также — создавая наилучшую диффузность звукового поля.
Функция потолка, как рассеивателя звука по проекту архитекторов Л.Бенуа и М. Гейслера выполняется 126-ю открытыми кессонами, обращенными к слушателям, в нижней части конструкции чердачного перекрытия концертного зала.
При тех размерах кессонов, которые заложены в конструкции обследованного чердачного перекрытия (размеры в плане каждого кессона 1680х1550мм, с глубиной кессонов 360мм), рассеивается, в основном, звуки средних и высоких частот.
Принятая в проекте архитекторов Л.Бенуа и М.Гейслера схема расположения кессонов позволяет в процессе реверберации многократно перекрывать каждый рассеянный звук другими рассеянными звуками (отражениями с других направлений), что весьма благоприятно сказывается на диффузности звукового поля.
Потолок — это потолок — дека.
Потолок — это потолок — дека, т.е. — звучащий потолок; или, иными словами, — потолок, усиливающий звук и увеличивающий его продолжительность — время реверберации. Специальная пластина — дека характерна, например, для всех струнных музыкальных инструментов.
Специалистам хорошо известно, что в оперных залах с естественной акустикой, когда в программах имеются хоровое пение, симфонические и органные концерты, без усиления звука потолком-декой невозможно добиться рекомендуемых в мировой практике параметров реверберации.
Потолок-дека в концертном зале Капеллы, усиливая звук, увеличивает время реверберации до 1.75 секунд на частотах 500, 1000 Гц.
В современных залах функцию потолка-деки придают чердачному перекрытию, часть которого в центре, непосредственно над залом, «отделена» от периметральной части того же перекрытия, и может колебаться независимо от периметральной части. Реализация именно такого решения представлена в главе 3 при рассмотрении авторских материалов Международного конкурса по проекту второй сцены Мариинского оперного театра в Санкт-Петербурге.
Потолок — резонатор.
Чердачное перекрытие концертного зала Капеллы достаточно жесткое и полностью закреплено по контуру, его колебания на средних и высоких частотах не могут быть свободными (не демпфированными).
Поэтому функция потолка — деки в первом проекте (архитектора Л.Бенуа) обеспечена восемнадцатью замкнутыми воздушными полостями, расположенными над кессонами, т.е. над зашивкой потолка из досок толщиной 40мм. Полости имеют акустически обоснованные ширину от 930мм до 1080мм, высоту 270мм и длину до 23000мм.
Варьирование ширины полостей от 930мм до 1080мм по авторскому ― Л.Бенуа замыслу ― несёт интуитивно верно найденный архитектором оттенок «рассогласования» резонансов этих полостей по их ширине.
В отличие от резонаторов-сосудов с отверстиями, представляющих собой системы с сосредоточенными параметрами, замкнутые воздушные полости в данном случае являются системами с распределенными параметрами,"многочастотными системами".
Замкнутые воздушные полости играют роль широкополосных резонаторов — усилителей звука. Заложенные в проекте архитектора Л.Бенуа размеры полостей позволяют усиливать звук всех частот, в том числе и звук очень низких частот — инфразвук. Усиление звука очень низких и низких частот и, соответственно, увеличение времени реверберации при акустической связи объема зала и объемов воздушных полостей крайне важно для должного восприятия хорового пения и органной музыки.
Образно говоря, восемнадцать резонаторов-усилителей, трактуемых как длинные деревянные трубы, сами являются “вторичным” оргâном, который в необходимой мере «продлевает» звучание существующего ныне в Капелле концертного органа и звучание хора.
Напомним о важнейшей роли исторической известково-гипсо-песчанной стяжки в обеспечении акустической роли замкнутых воздушных полостей — резонаторов.
По акустическим принципам конструкция резонатора-усилителя предполагает наличие в нём только достаточно жестких стенок, отражающих многократно звук в полость резонатора и во внешнюю среду. Все стенки резонатора-усилителя нельзя демпфировать, т.е. искусственно гасить их колебания.
Излучение любого резонатора всегда направлено в сторону наименьшего акустического сопротивления.
Как правило, «чистые» физические резонаторы имеют резонирующие полости, частично открытые в нужном направлении. При этом размеры и акустическое сопротивление открытого конца резонатора подбираются на основе специальных расчетов в зависимости от требуемой основной частоты (в колебательной системе с сосредоточенными параметрами) и эффективности резонатора. Резонаторы в виде, например, труб с открытыми концами не могут быть достаточно широкополосными, что не всегда удобно к реализации в концертных залах.
В обследованном чердачном перекрытии со стороны чердака над полностью замкнутым резонатором имеется настил из досок толщиной 50мм и историческая известково-гипсо-песчанная стяжка толщиной 100мм.
Под резонатором находится только зашивка чистого потолка досками толщиной 40мм. Поэтому верхние стенки резонаторов-усилителей, облицованные исторической известково-гипсо-песчанной стяжкой толщиной 100мм, значительно более жесткие, чем нижние (только доски толщиной 40мм без стяжки).
Цилиндрическая жесткость (сопротивление изгибу) стенок воздушных полостей со стороны чердака (со стяжкой) в 416 раз больше, чем стенок со стороны концертного зала (без стяжки). Наименьшее акустическое сопротивление стенок резонаторов-усилителей имеется только со стороны концертного зала.
Таким образом, в проекте архитектора Л.Бенуа исторической известково-гипсо-песчанной стяжке толщиной 100мм была отведена роль звукоизолятора, а также роль эффективного отражателя звука в полость резонаторов.
Из полости резонаторов усиленный звук (через тонкую и значительно менее жёсткую зашивку чистого потолка) поступал в концертный зал. Резонаторы (восемнадцать воздушных полостей) на потолке концертного зала Капеллы, являясь многорезонансными колебательными системами, за счёт жёсткой связи с потолком зала, возбуждают интенсивные колебания этого потолка в целом.
Однако историческая известково-гипсо-песчанная стяжка использовалась и как теплоизолятор.
Компоненты исторической известково-гипсо-песчанной стяжки толщиной 100мм — это известковый раствор, гипсовый раствор и наполнители, включая, например, прокалённый песок.
Коэффициент теплопроводности известкового раствора в условиях эксплуатации Санкт-Петербурга равен 0.81 Вт/м0С, а коэффициент теплопроводности гипсового раствора в гипсовых плитах равен 0.47 Вт/м0С.
Если указанные компоненты в стяжке находятся в равных долях, то коэффициент теплопроводности стяжки в целом можно оценить величиной 0.6 Вт/м0С. Материал с таким коэффициентом теплопроводности не может быть отнесен к материалам с высокой теплоизолирующей эффективностью. Эффективные теплоизоляторы, например, шлаковатные плиты Rockwol, или стекловолокнистые маты Ursa, или плиты Epaterm и многие другие, имеют коэффициенты теплопроводности 0.045–0.06 Вт/м0С, т.е. — в 10 раз меньше, чем историческая известково-гипсо-песчанная стяжка.
Отсюда ясно, что исторической известково-гипсо-песчанной стяжке в конструкции чердачного перекрытия архитекторы Л.Бенуа и М.Гейслер не отводили роль эффективного теплоизолятора. Да в этом, как показано ниже, в п. 2.5.7., и не было никакой необходимости.
Существует ли теплоэнергетический баланс концертного зала Капеллы в соответствии с современными теплотехническими нормами?
Из п.п. 2.3, 2.4 следует, что архитекторы Л.Бенуа и М.Гейслер известково-гипсо-песчанной стяжке в конструкции чердачного перекрытия дали главную роль не теплоизолятора, а роль звукоизолятора и отражателя звука из воздушных полостей (резонаторов-усилителей) в концертный зал.
Очевидно, что исторически роль отопителя чердака играл бывший жаровой канал, расположенный по всему контуру чердака, а ныне эту же функцию выполняет вентиляционный воздуховод с вентиляционными решетками. Задача сохранения тепла решалась весьма рационально, точно так же, как она решается и в современных зданиях, имеющих чердак ― пространство чердака нагревается до 9–140С.
Фактическое расчетное приведенное сопротивление теплопередаче в исторической конструкции всего чердачного перекрытия со стяжкой из известково-гипсо-песчанного раствора, с замкнутыми резонаторами и двумя дощатыми настилами 40 и 50мм равно 0.975 м2 0С/Вт.
Для оценки теплоэнергетического баланса здания концертного зала были использованы современные действующие методики.
Как показали теплотехнические расчеты в соответствии со строительными нормами, полный теплоэнергетический баланс концертного зала Капеллы обеспечен при достижении величины требуемого приведенного сопротивления теплопередаче чердачного перекрытия 0,529 м20С/Вт и температуры воздуха на чердаке у поверхности чердачного перекрытия 140С при расчетной температуре наружного воздуха — 260С.
Расчётами было определено, что полный теплоэнергетический баланс концертного зала Капеллы обеспечен при температуре воздуха на чердаке у поверхности чердачного перекрытия 90С (при температуре наружного воздуха «минус» 260С). Этот результат справедлив, если чердачное перекрытие обладает приведенным сопротивлением теплопередаче, равным 0.975 м2 0С/Вт.
Именно такой величиной характеризуется обследованное чердачное перекрытие концертного зала Капеллы.
Очевидно, что в зимний период, при фактических температурах наружного воздуха выше расчётной температуры — 260С, историческое чердачное перекрытие позволяет сохранить теплоэнергетический баланс концертного зала и при температуре воздуха на чердаке, гораздо ниже 90С.
2.5. О неопустимости изменений исторической конструкции чердачного перекрытия, которые могли бы привести к ухудшению акустики концертного зала Капеллы
Возможно ли заполнение воздушных полостей 18-ти резонаторов тепло — или звукоизолирующим материалом при реставрации?
Мы ранее установили, что заполнение воздушных полостей исторической конструкции чердачного перекрытия, предложенное специалистами по пожарной безопасности, тепло — или звукоизолирующим материалом по проекту ООО «Гипротеатр» могло бы привести к полной потере акустической функции потолка-деки.
В этом случае энергия многократных отражений от внутренних поверхностей резонаторов-усилителей поглощалась бы в материале заполнения полостей за счет преобразования звуковой энергии в тепловую.
Пожарная безопасность, о которой в данной ситуации ратовали соответствующие специалисты, успешно могла бы быть обеспечена другими, менее вредными для акустики зала способами.
Следовательно, воздушные полости должны быть сохранены не заполненными каким-либо тепло — или звукопоглощающим материалом.
Об окраске чистого потолка со стороны зрительного зала современными красками, например, нитроэмалями или красками на полиамидной основе также нужно сказать нечто важное.
Очевидно, что потолок является эффективным отражателем и рассеивателем звука с наилучшей характеристикой коэффициента отражения.
Чтобы сохранить эти функции и после реставрации принято, что применяемые для отделки потолка шпатлёвка и краска, должны быть близки по химическому составу историческим материалам, т.е. приготавливались на масляной основе.
Недопустимо применение нитроэмалей и красок на полиамидной основе, или водоэмульсионных растворов красок и шпатлевок.
О замене исторической известково-гипсо-песчаной стяжки слоем эффективного теплоизолятора с расположенной на нем цементной стяжкой малой толщины нельзя говорить всерьёз, занимаясь профессионально проектированием реставрационных технологий уникальных театральных зданий.
По упомянутому предложению ООО «Гипротеатр» историческая известково-гипсо-песчанная стяжка толщиной 100мм следовало заменить на слой толщиной 168мм из эффективного утеплителя Epaterm, выше которого расположена еще цементная стяжка толщиной 20мм.
Это предложение ООО «Гипротеатр», а также Предписание заказчика: Государственного Учреждения «Дирекция заказчика по ремонтно-реставрационным работам на памятниках истории и культуры» сделаны на том основании, что эффективный утеплительEpaterm, якобы, полностью идентичен исторической известково-гипсо-песчанной стяжке толщиной 100мм и «….является аналогом оригинального тепло — и звукоизолирующего материала».
Известный в Европе, как один из лучших, концертный зал Капеллы не является тем объектом реставрации, на котором подобные эксперименты или прямые аналогии могут иметь место.
Необходимы были комплексные обследования с непременным участием, многих высоко квалифицированных специалистов, в том числе и акустиков, чтобы сделать выбор в пользу сохранения уникальной акустики известнейшего концертного зала. Такие комплексные обследования были проведены, и проведены нами своевременно.
Акустические аспекты реконструкции в зале Капеллы изучены весьма и весьма полноценно.
Теплоэнергетический аспект.
Из п. 2.4 следует, что утверждение в отчёте ООО «Гипротеатр» об идентичности исторической известково-гипсо-песчанной стяжки толщиной 100мм и заменяющего ее слоя толщиной 168мм из эффективного утеплителя Epaterm, мягко говоря, несправедливо.
Не могут быть идентичными с теплотехнической точки зрения материалы, коэффициенты теплопроводности которых различаются в 10 раз, а толщина весьма эффективного заменяющего материала Epaterm принята в 1.68 раза больше, чем историческая (на порядок менее эффективная) стяжка?!?!…
Если толщина более эффективного заменяющего материала в 1.68 раза больше менее эффективного исторического материала, то, в итоге, авторами предложения из ООО «Гипротеатр» готовилась ситуация, когда термическое сопротивление предложенного материала в 16.8 раза больше, чем исторического. Зачем? Для пресловутого «..Про запас..», что-ли???
Ведь историческая известково-гипсо-песчанная стяжка толщиной 100мм в сочетании с воздушными полостями и двумя слоями досок уже обеспечивает теплоэнергетический баланс концертного зала в зимних условиях практически при любых положительных температурах пространства чердака (в п. 2.4 это убедительно показано).
Нагрев воздуха на чердаке обеспечивался и будет обеспечиваться бывшим жаровым каналом существующей (также реконструируемой) системы отопления в здании концертного зала!…
Акустические перспективы.
Ученые из МГУ и ГУП МНИИП (П.Кравчук и В.Сухов), проводя акустические измерения в концертном зале за 5 лет до его реставрации в октябре 2001 года, конечно, не имели представления о составляющих элементах исторической конструкции чердачного перекрытия.
Однако, высокий профессионализм, опыт и интуиция позволили им, ничего не зная о составе исторических конструкций, ещё тогда написать в выводах к Акустическому Паспорту Капеллы: «Все сохранившиеся оригинальные конструкции потолка и пола при ремонте зала необходимо и далее сохранить, заменив лишь непригодные части на новые из того же материала».
«….из того же материала…»!!!!!!!
Я не имею оснований возражать этим дальновидным ученым!
Более того, мне чудесным образом удалось сделать всё возможное, чтобы сохранить акустические качества концертного зала Капеллы на долгие годы и после реставрации.
В п.п. 2.3 и 2.4 показано решающее значение исторической известково-гипсо-песчанной стяжки для усиления звука с помощью воздушных полостей, как резонаторов-усилителей. Если бы предложение ООО «Гипротеатр» без нашего ведома было реализовано, то и предложенная ими цементная стяжка толщиной 20мм на слое эффективного утеплителя Epaterm в системе масса-упругость-масса-упругость-масса стала бы нежелательным для акустики зала, но эффективнейшим двухзвенным виброизолятором-поглотителем колебаний потолка, работающим в важнейших низко — и среднечастотном, и инфразвуковом диапазонах.
Полезные колебания верхнего дощатого настила воздушных полостей «эффективно» гасились бы. Многократные отражения внутрь воздушной полости имели бы значительно меньшую энергию, уже совершенно малозначительную для акустики концертного зала.
Исторически сложившаяся функция резонаторов-усилителей звука была бы безвозвратно утеряна, т.к. жесткость верхних стенок резонаторов была бы всего в 2 раза больше жесткости стенок, обращенных в зал, и не только за счет разности толщин досок потолка (40мм) и настила (50мм). В исторической конструкции чердачного перекрытия это различие жесткостей находится в соотношении 416:1.
Восстановление функции резонаторов-усилителей (если бы причина этого явления только лишь впоследствии была бы определена специалистами) могло быть отложено на многие десятилетия…, а слава одного из лучших театров Европы могла померкнуть.
Время реверберации в концертном зале уменьшилось бы при этом до недопустимых значений 1.3–1.4 сек.
Мало было бы надежды на возвращение к прежней конструкции потолка Капеллы при каких-то последующих восстановительных работах, т.к. «результаты» деятельности ООО «Гипрогор» в период реконструкции 2005 года в акустической части этого проекта были бы катастрофически разрушительными для акустических конструкций и для акустики зала.
Частный вывод.
Проведенное мною акустическое и теплоэнергетическое обследование было важным и позволило в 2005 году весьма и весьма своевременно сделать вывод о недопустимости реализации предложения ООО «Гипротеатр» о замене исторической известково-гипсо-песчанной стяжки толщиной 100мм на слой толщиной 168мм из эффективного утеплителя Epaterm.
Потребность в утеплителе Epaterm была своевременно отвергнута автором на основе современных норм с точки зрения теплоэнергетического баланса концертного зала Капеллы, на основе правильных умозаключений и тщательных исследований в решении проблем сохранения уникальной акустики зала Капеллы.
На примерах, подобных приведённым в данной главе, можно делать полезные выводы всем специалистам, так или иначе связанным с решением конкретных технических проблем реконструкции уникальных концертных залов.
Значение своевременных консультаций, обследований просвещёнными и практикующими акустиками в подобных изложенному случаях трудно переоценить. Архитекторам-реставраторам не надо испытывать чувства неловкости, приглашая специалистов-акустиков (и не только для работ с уникальными объектами).
2.6. Заключение по главе 2
По прошествии значительного времени после 2005 года с учётом аналитических материалов нашего обследования, многочисленных расчётов и оценок можно полагать, что в 2005 году приняты поучительные и единственно верные решения и проведены технологические операции, действительно ориентированные на сохранение уникальной акустики Капеллы, с программными целями:
1 Не допустить ликвидации функции потолка, как резонатора, выполнение которой обеспечено восемнадцатью закрытыми воздушными полостями-резонаторами в чердачном перекрытии над концертным залом с размерами: длина 23 метра, высота 0,27 метра и шириной от 0,93 до 1,08 метра.
2 Восстановить историческую известково-гипсо-песчаную стяжку толщиной 100мм на верхнем настиле из досок 50мм в составе конструкции чердачного перекрытия концертного зала.
3 Между восстанавливаемой исторической известково-гипсо-песчаной стяжкой толщиной 100мм и верхним настилом из досок 50мм разместить слой пароизоляции из 1 слоя толя или 2-х слоев пергамина (обосновано расчетом влагонакопления в конструкции чердачного перекрытия за отопительный период).
4 Запретить в конструкции чердачного перекрытия концертного зала размещение эффективного утеплителя (Rockwol, Ursa, Epaterm и других) с тонкой цементной стяжкой на их внешней стороне.
5 Применяемые для отделки потолка со стороны зала шпатлевка и краски выбрать близкими по химическому составу историческим материалам. Нитроэмали и краски на полиамидной основе, или водоэмульсионные растворы красок и шпатлевок не применять.
6 Поддержать мнение инженеров-кустиков из МГУ и ГУП МНИИП и уменьшить количество мест в концертном зале Капеллы, чтобы количество мест стало близким к первоначальному, предусмотренному в XIX веке проектом Л.Бенуа.
Значимость этих шести решений трудно переоценить — значимость их очень велика для сохранения этого памятника в духовной жизни человеческого общества.
Приведённый ознакомительный фрагмент книги Гармония архитектуры и акустики предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других