1. Книги
  2. Книги о путешествиях
  3. Андрей Попович

Шхуна «Чава». Эволюция судовой машины. 2004—2018

Андрей Попович
Обложка книги

Эта книга продолжает серию «Шхуна „Чава“» и описывает развитие конструкции судовой машины и связанных с ней систем в течение двенадцати лет эксплуатации. Рассмотрен смежный вопрос электрохимической коррозии узлов.В книге более 50 иллюстраций, схем и чертежей.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Шхуна «Чава». Эволюция судовой машины. 2004—2018» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Теоретические изыски

До того, как с головой броситься в такую сложную техническую задачу, хотелось бы получить приблизительную картину, что получится в результате. По крайней мере, это помогает развеять мифы, которые так любят моряки, и поставить реальные цели.

Скорость хорошо сделанного яхтенного корпуса, на гладкой воде и в штиль, будет приблизительно соответствовать данным таблицы, приведенной ниже. Используем ее для оценки скорости, необходимой мощности двигателя, и зависимости скорости от загрузки для нашего конкретного случая — проекта Hout Bay 40.

Из таблицы следует, что «в нашем случае», при длине корпуса по КВЛ около 10 м, удельная энерговооруженность в соответствии с требованиями ORC должна составлять не менее 0,7, а диапазон, в который попадает подавляющее большинство современных яхт — от 1,5 до 5. Расчетная скорость Hout Bay 40 должна быть в первом случае 5,6 узла, а во втором — от 6,7 до 7,8 узлов. Для «пустой» лодки с водоизмещением 12 тонн, необходимые мощности составят 8,4 л.с., 18 л.с. и 60 л.с., для крейсера, готового к походу (пусть будет 15 тонн, +25% водоизмещения!) — 10,5 л.с., 22,5 л.с. и 75 л.с.

Сделаем оценку зависимости скорости лодки от ее загрузки. При мощности двигателя 20 л.с. «пустая» яхта теоретически должна развить скорость 6,7 узлов, а «загруженная» — 6,5 узлов. Отсюда следует довольно нетривиальный и практически полезный вывод, который можно распространить и на движение под парусами — при увеличении водоизмещения на 25% крейсерская яхта умеренно тяжелого водоизмещения потеряет лишь 3% скорости.

Диаграмма для выбора мощности двигателя парусной яхты от яхтенного строителя Альберта Назарова

Итак, с первым вопросом более-менее все ясно, причем мощность можно подобрать по району плавания и личным предпочтениям. Необходимость постоянно преодолевать сильные течения, неопытный экипаж, в конце-концов, просто любовь к «мотор-сейлерам», заставит выбрать для себя двигатели в районе верхнего предела. «Отмороженные» парусники-крейсерщики предпочтут экономичный маломощный движок, который будет запускаться лишь для того, чтобы зайти в порт, чтобы не болтаться без хода в штилевых условиях, и обеспечивать в походе электроснабжение.

Часто выбор излишне мощного двигателя обосновывают необходимостью «запаса мощности» и «обеспечения безопасности». Однако такое решение всегда будет связано с дополнительными расходами в процессе установки и эксплуатации.

Чтобы перевести эти слова в реальный анализ, «в цифры», проще всего оценить возможность движения судна под двигателем против ветра без учета волнения. Эта ситуация характерна для лодки, живущей в «защищенных» водах.

Ветровое сопротивление, которое испытывает судно, пропорционально квадрату скорости ветра, и описывается формулой:

R = 0,07*K*V2*Sмид, (кгс);

где К — коэффициент воздушного сопротивления: обычно составляет 0,6…0,9;

V — скорость ветра в м/сек;

Sмид — суммарная площадь поперечного сечения лодки выше КВЛ, включая площадь рангоута и такелажа.

Приняв для проекта Hout Bay 40 в варианте гафельной шхуны Sмид = 10 м2, Кв=0,7, сводим результаты расчетов в таблицу:

Расход топлива зависит от мощности, снимаемой с двигателя винтом. В оптимальных условиях, когда двигатель работает в своей экономичной зоне оборотов, производители декларируют для такого порядка мощностей 185—195 гр. расхода дизельного топлива из расчета на 1 л. с. Относительно большие двигатели обычно более экономичны, по сравнению с маломощными. Удельный вес дизельного топлива составляет около 0,8. Для приведения лодки в движение, и обеспечения экономичного хода 5 узлов (см. табл.) нужна мощность 6—8 л.с. с часовым расходом топлива около 1.5 — 2 л.

Первые цифры относятся к «пустому» корпусу, вторые — к «груженому».

Увеличение скорости лишь на один узел удваивает необходимую мощность и, соответственно, расход топлива. Необходимость использовать весь запас мощности двигателя, или наоборот, работа с небольшой нагрузкой выводит его из экономичной зоны, удельный расход увеличивается до 200—210 и более грамм на 1 л. с.

Практические эксперименты показали, что дизель Mitsubishi 4D56 (1,5 литра, автомобильный) расходует на этом корпусе на скоростях 5—6 узлов 5—6 литров в час, а на скорости 8 узлов — около 18 литров в час. Это был мой первый вариант судовой машины, который эксплуатировался два сезона. Он практически на пределе использовал возможности винта диаметром 430 мм, заставляя его работать на максимальной мощности вблизи начала кавитации. «Запас мощности» был вполне достаточен, машина обеспечивала максимальный упор около 600 кгс. Теоретически, лодка с таким движителем способна пробиваться против любого ветра где-нибудь в защищенной от волны акватории.

Однако такие характеристики потребовали немалой цены. Большой расход топлива на частичных нагрузках, в экономичном режиме движения, снизил автономность вдвое от оптимальной, движение под двигателем сопровождалось сильным шумом в кают-компании. Дополнительная звукоизоляция «не вписывалась» в размеры машинного отделения и требовала изменения компоновки.

Нет худа без добра, это как раз и подвигло на изучение теории, и последующую замену двигателя на более экономичный.

Исходя из оптимизации по автономности, достаточно использовать двигатель мощностью 20 л. с. Такой двигатель выглядит минимально возможным из соображений безопасности, обеспечивая упор более 200 кгс. Максимальная скорость яхты на тихой воде также выглядит вполне достойной, составляя 6,5 — 6,7 узла. «Штилевой» экономичный ход со скоростью 5 узлов с потреблением топлива менее 2 л. в час обеспечивает переход в 1000 морских миль, или 500 — 600 часов зарядки бортовых аккумуляторов со штатной топливной цистерной объемом 350 л.

В связи с этим встал вопрос о замене винта. Стоявший у меня до сих пор трехлопастник от Vetus 17 дюймов с шагом 9 дюймов прекрасно работал, но становился заметным тормозом под парусами. Нужный по расчету трехлопастный винт 16х8 выглядел тоже достаточно большим по размерам. Может быть, есть смысл поставить флюгерный винт, к примеру от Maxprop, у которого лопасти поворачиваются «по потоку» во время хода под парусами? Так его цена в несколько раз больше!

По одним слухам, обычный винт на парусной яхте снижает скорость на 10—15%, по другим — скорость может упасть и на узел…

И тут передо мной встала задача, попробовать рассчитать потери, вносимые винтом, и прочими деталями, например, цинковыми протекторами, выступающими из корпуса, и выяснить, как они влияют на суточный переход. Кроме того, мне хотелось получить представление о расходе топлива и влиянии на расход гидродинамики корпуса.

Посчитав сопротивление корпуса, и приняв диаметр винта 17 дюймов и Сx =0,5, я получил совершенно удручающие результаты.

Формула для расчета сопротивления заторможенного винта в потоке воды.

F=Cx*S*p*v2/2; S — поперечная площадь тела, v — скорость лодки.

Параметры яхты (проект Hout Bay 40): длина КВЛ 10 м, ширина КВЛ 3.5 м, D=13 кубов.

Площадь заторможенного винта при дисковом отношении 0,5 — 0,049 кв. м., площадь цинковых протекторов — 0,025 кв. м.

При таких исходных данных расчетное сопротивление корпуса на скорости 4 узла — 57 кгс, а сопротивление винта — 49 кгс, протекторов — 25 кгс. Если скорость лодки возрастает, соотношение меняется, к примеру на 7 узлах — 278 — 149 — 77, то есть относительное влияние винта и прочих выступающих деталей падает с увеличением скорости. Это связано с возрастающим вкладом сопротивления формы.

В результате несложных вычислений получается вот такой график мощностей, по горизонтали — скорость в узлах, по вертикали — мощность движителя, приводящего судно в движение, в лошадиных силах.

N — мощность движителя, необходимая для движения «чистого» корпуса без протекторов и винта, N общая — мощность, нужная, чтобы двигать лодку при заторможенном винте, и с учетом протекторной защиты. N без учета винта — мощность для корпуса с протекторами. Этот график предназначен для иллюстрации потерь от протекторной защиты, при движении под дизелем.

Видно, что заметную долю вносят протектора, установленные на корпусе.

Оценка совпадения теоретических расчетов — с реалом довольно близко, также как и таблицей, приведенной в начале главы, во всяком случае лодка разгонялась до 8 узлов с мощностью 60—70 лс, сопротивление винта на скоростях 4—5 узлов по оценке примерно совпадает с расчетом.

Результаты расчетов позволяют сделать следующие выводы:

1. При движении под парусами лодка испытывает большое сопротивление от винта и протекторов.

Для движения со скоростью 5 узлов для «чистого» корпуса необходимо меньше 6 л.с., на корпусе «с навеской» при той же силе ветра лодка получит ход около 3,5 узлов. При усилении ветра влияние винта уменьшается, но остается довольно заметным — мощность 22,3 л.с., «чистый» корпус — 7 узлов, «реальный» — 5,8.

В реальном походе можно считать, что на типичных скоростях 4—6 узлов под парусами мы получим ежесуточные потери 30—40 миль, заметно уменьшить которые можно, используя складывающийся, либо флюгерный винт. Если при этом требуется обеспечить экономичность хода под двигателем, остается только флюгерный, так как к. п. д. складного винта заметно ниже. У «флюгера» фирмы Макспроп есть еще одно, очень важное преимущество. Шаг его лопастей можно уточнить по результатам испытаний, потому что он выставляется при сборке винта.

2. При движении под двигателем на скорости 6 узлов необходимая мощность — 11,1 л.с., навешенные протектора увеличивают ее до 15 л.с.! При этом расход топлива увеличивается от 2,6 л до 3,6 л за час. Для движения со скоростью 7 узлов необходимая мощность, соответственно, — 28,4 против 22,3 л.с., а расход топлива возрастает от 5,3 л до 6,7 л за час работы дизеля.

Отсюда следует интересный вывод — на 100 литрах диз. топлива и на скорости 6 узлов лодка пройдет 231 милю, со скоростью 7 узлов — 132 мили.

А если на корпус установить угловатые цинки протекторной защиты, то 167 миль и 104 мили, соответственно.

3. Вместо «протекторов» можно подставить необходимое, по вкусу — неудачную конструкцию скега или руля, обрастание корпуса в результате неправильного выбора краски, волочащиеся на ходу за кормой концы, тузик, и рыболовные снасти. Отметим, что «лишнее» сопротивление корпуса ниже ватерлинии сильно ухудшает показатели лодки, в отличие от «лишнего» веса. Поскольку сопротивление корпуса сильно зависит от ряда малозаметных факторов, на практике теоретические цифры сопротивления корпуса могут легко вырасти на 20—30% и более. Практический пример — после «большого» ремонта, когда подводная часть обрабатывалась пескоструем и покрывалась заново, скорость корпуса при прочих равных условиях выросла примерно на 10% — добавочные пол-узла хода.

4. Вся «теория», приведенная выше, подходит для оценки движения хорошо спроектированных и построенных яхт, имеющих винт с диаметром 4—5% от длины КВЛ.

5. КПД флюгерного винта ниже, чем у обычного винта, примерно на 10%, КПД складного — на 20—30%.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Шхуна «Чава». Эволюция судовой машины. 2004—2018» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я