Обновленное издание знаменитого бестселлера. Эта книга — самый полный путеводитель по работе мозга и биологическим потребностям человека. Написанная профессором, нейрофизиологом Вячеславом Дубыниным, она приближает читателя к пониманию собственного организма, учит управлять природными механизмами тела, чтобы реализовать личную одаренность. Книга объясняет: — Почему шутка «Подышал рядом с тортиком — набрал 5 кг» не такая уж и шутка. — Как страстная влюбленность может ухудшить работу лобной коры. — Чем объясняется тяга людей к бродяжничеству. — Почему кормящие матери становятся сверхагрессивными. — Действительно ли фитнес может противостоять депрессии. — С чем связано массовое почитание капибар. В формате PDF A4 сохранен издательский макет книги.
Приведённый ознакомительный фрагмент книги «Мозг и его потребности 2.0. От питания до признания» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 3. Мозг и любопытство
Что такое любопытство?
Любопытство — одна из самых главных программ, вставленных в человеческий мозг. Мы действительно очень любознательны, и для нашего мозга новая информация — это отдельный источник «кайфа». Разберем, в каких формах проявляется любопытство и какие нервные структуры при этом работают.
Любопытство — потребность в новой информации плюс проявление этой потребности на поведенческом уровне.
Как любое поведение, реакции, связанные с любознательностью и сбором новой информации, могут протекать в форме рефлекторного ответа на внешние стимулы либо запускаться изнутри организма. Во втором случае мы говорим о явном проявлении потребности.
С рефлексами (реакциями на стимулы) все просто, это самый легко изучаемый тип поведения. Когда появился стимул, например кто-то крикнул или чихнул, мы поворачиваем голову, чтобы посмотреть, кто это там шумит. Или, почувствовав чье-то прикосновение в водоеме, вскрикиваем и спешим выбраться на берег — мало ли что там плавает. Во врожденных рефлекторных дугах нейроны, отвечающие за подобные действия, соединены по неким генетически заданным принципам. Сборка таких цепочек нервных клеток кодируется на уровне ДНК, никакого особого обучения не нужно.
Более сложная и эволюционно продвинутая ситуация — когда поведение запускается изнутри мозга. Именно в этом случае мы говорим о нарастании потребности. Она способна вызвать реакцию, в том числе поиск новой информации, даже при отсутствии внешних стимулов.
Потребность в новизне может возникать, когда мозгу вздумалось вдруг обычным вечером в среду, что ему не хватает информации для удовлетворения пищевой или, например, половой потребности. Вот тогда поиск новых сведений, сигналов и — шире — новых возможностей будет предварительным этапом для удовлетворения нужд, связанных с выживанием, размножением, питанием и т. п. Человек закопается в интернете, читая статьи до тех пор, пока мозг не решит, что теперь он достаточно подкован, допустим, в вопросах засолки овощей на зиму. Получается, что в нервной системе возникает некое внутреннее состояние, которое и запускает поведение, направленное на поиск свежих стимулов. Такое поведение мы называем проявлением любопытства.
Потребности часто конкурируют, поскольку поведение в каждый момент времени целесообразнее направлять на удовлетворение одной из них.
Скажем, любопытно, но страшно проверять, кто там ночью шуршит в кустах под окнами. Или любопытно, но лень идти на кухню, чтобы посмотреть, чем там гремит кот. Реже две потребности работают в одном направлении, например в выборе новой еды или нового партнера для размножения (эффект Кулиджа[3]). Если вспомнить классификацию потребностей по А. Маслоу, то нужда в знании, понимании и исследовании находится на самой ее вершине. Это то, что Маслоу назвал духовными потребностями личности, что, конечно, очень лестно для поведения, связанного с любопытством. Но надо учитывать, что многие реакции, направленные на сбор новой информации, появляются в эволюции очень рано.
Напомню, что по классификации академика П. В. Симонова потребности делятся на три группы: витальные, зоосоциальные и потребности саморазвития. Каждая из них базируется на деятельности определенных мозговых центров. Пищевое поведение, о котором мы уже говорили, относится к витальным программам — «вопросам жизни и смерти» — и вполне буквально.
Исследовательские программы, когда сбор новой информации производится как бы впрок, явно направлены в будущее. От знания, как закатать овощи на зиму, не зависит наша жизнь (по крайней мере, здесь и сейчас). П. В. Симонов отнес любопытство к потребностям саморазвития.
Например, когда ребенок впервые видит лягушку, он проявляет недюжинное любопытство. Для него это существо — не пищевой объект, и он ее, как правило, не боится, но зато как ему интересно! Наблюдать, пытаться взять в руки, подражать ее прыганию.
В случае программ саморазвития мозг реализует реакции как бы наперед, и биологический смысл любопытства состоит в формировании точной картины мира, более успешном прогнозировании событий и, благодаря этому, в реализации более адаптированного к внешней среде поведения. Если ребенок вместо лягушки будет приставать, например, к коту и потянет его за хвост — тот ожидаемо зашипит-зарычит. А ребенок поймет, что тиранить котофея — опасное занятие.
Исследовательское поведение — очень яркий пример программ саморазвития. Действительно, в тот момент, когда мы собираем новую информацию, мы еще не знаем, пригодится ли она нам и в каких случаях. Быть может, она и вовсе бесполезна. Но сам по себе сбор неизвестных прежде сведений — это хорошо, интересно и важно, и в процессе мы испытываем положительные эмоции. Это происходит с вами прямо сейчас, когда вы читаете данную книгу. Биологически чем больше знаний об окружающем мире имеет мозг, тем адекватнее и точнее его поведение. Поэтому различные программы, связанные со сбором новой информации, появляются в эволюции очень рано и со временем лишь усложняются вплоть до самых «возвышенных» вариантов, которые свойственны только человеческому мозгу.
Типы исследовательского поведения
Программы, связанные с любопытством у животных, можно разделить на три уровня.
• Первый уровень (самый древний) обеспечивает ориентировочный рефлекс. Это врожденная программа, которую описал еще И. П. Павлов и назвал рефлексом «Что такое?». Это любопытство в его самой простой форме. Например, заслышав шаги в отдалении, собака навострит уши: «Кто там? Свои? Чужие? Где?». Нейронные сети, обеспечивающие ориентировочный рефлекс, находятся в среднем мозге.
• Второй уровень — поисковое поведение. Это активные действия в условиях неопределенности, когда организм исследует новую территорию, для того чтобы решить какую-нибудь проблему. Например, в аудиторию заходит опоздавший студент и ищет, где можно сесть. Его поведение подчиняется программам любопытства: он вертит головой, смотрит во все стороны и, найдя наконец свободный стул, направляется прямо туда. Это типичный вариант реакции, связанной с перемещением в пространстве. Для реализации поискового поведения нужно идти, бежать, плыть, двигаться на плоскости или в трех измерениях. Со стороны тела происходят сгибания рук и ног. Это — база поискового поведения. Структура, которая их запускает, называется субталамус. Находится она в задней части промежуточного мозга, на границе таламуса и гипоталамуса.
• Третий уровень — это манипуляции с предметами. Слово «манипуляция» происходит от латинского manus — «рука». В данном случае это не имеет ничего общего с тем, чтобы какими-то ухищрениями заставить другого человека что-то делать. Здесь мы манипулируем чисто механически — когда наши пальцы работают и мы хотим посмотреть, что находится внутри некоего объекта, раскрутить, «раздербанить» незнакомый или знакомый предмет. Например, разбираем на детали сломавшийся пылесос, искренне надеясь найти причину поломки. Такого рода программы характерны для линии эволюции обезьян (приматов). За манипуляции с предметами отвечает кора больших полушарий, а точнее двигательная кора, расположенная в задней части лобной доли.
Для того чтобы запускалось исследовательское поведение, направленное на сбор новой информации, нужно, чтобы сам мозг заметил факт новизны: «О, с этим мы еще не сталкивались!». Отдельные нейроны, их группы, нейронные комплексы работают на то, чтобы сравнивать уже имеющиеся сведения с поступающими. И если в этой свежей информации есть что-то необычное, что нашему организму раньше не встречалось, тогда срабатывают разные варианты исследовательского поведения.
Чтобы реализовался ориентировочный рефлекс «Что такое?», анализ сенсорной, поступающей от органов чувств информации ведет верхняя часть среднего мозга — четверохолмие.
Для запуска поискового поведения и сбора информации «в новом месте» очень важна старая кора, прежде всего гиппокамп.
Результаты манипуляции с предметами оценивает поясная извилина — область новой коры больших полушарий, которая относится к лимбической доле и находится на внутренней поверхности полушарий над мозолистым телом.
Поясная извилина крайне важна для оценки результатов любого поведения, а также для генерации эмоций, связанных с успехом или неудачей поведения, провалена «миссия» или нет.
В конце главы мы обсудим те проявления любопытства, которые характерны только для человека и связаны с речевой сферой. Ведь наш мозг так устроен, что положительные эмоции нам приносят не только манипуляции с предметами, но и «манипуляции» со словами — от частушек, шуток и каламбуров до высших проявлений творчества — поэм, сонетов и великих романов.
Ориентировочный рефлекс
Посмотрите на рисунок среднего мозга в поперечном срезе (рис. 3.1, вверху). В его верхней части расположены холмики четверохолмия (1), которые являются древними зрительными и слуховыми центрами. Сюда непрерывно приходят сигналы от сетчатки и внутреннего уха, и нейроны четверохолмия сравнивают поток внешней информации, в котором мы находимся сейчас, с тем, который был, например, 0,2–0,3 секунды назад. Если что-то изменилось в окружающем мире, запускается тот самый ориентировочный рефлекс. Он заключается в повороте глаз, головы и, если нужно, всего тела в сторону нового сигнала. Чтобы это сделать, четверохолмие передает информацию на глазодвигательные центры (2) и мотонейроны, управляющие мышцами шеи и туловища.
Рис. 3.1. Вверху: поперечный срез среднего мозга человека.
Обозначения:
1 — четверохолмие;
2 — глазодвигательные центры;
3 — покрышка среднего мозга, а также схема нейронной сети, реагирующей на появление нового стимула.
Внизу: ДН — нейрон-детектор новизны, ТИ — тормозный интернейрон
У позвоночных с каждым глазом связано по целых шесть мышц, которые должны очень слаженно работать, вращая глазное яблоко, в том числе для реализации исследовательского поведения. Пять из шести глазодвигательных мышц управляются мотонейронами, расположенными в нижней части среднего мозга, и лишь одна, шестая, — мотонейронами моста. Кроме того, сигнал из четверохолмия уходит на область, которая называется вентральная покрышка, или просто покрышка среднего мозга (3). Это значимая зона, ведь именно здесь находятся нервные клетки, которые отвечают за положительные эмоции, возникающие от того, что мы воспринимаем что-то новое. Увидеть, услышать, каким-то иным образом ощутить что-то, чего мы не видели, не слышали и не ощущали раньше, — важно, интересно и позитивно для организма. Поехать в экзотическую страну и попробовать там какой-то необычный фрукт. Или отправиться за полярный круг и впервые увидеть огни северного сияния — это тоже будет позитивной новизной. Центр этого позитива — вентральная покрышка, и аксоны ее нейронов поднимаются в большие полушария — как в кору, так и в базальные ганглии.
Нейромедиатором при этом является дофамин — важнейшая молекула, отвечающая за наши положительные эмоции.
Ориентировочный рефлекс — самый древний вариант любопытства. Если вы подойдете к аквариуму и постучите по стеклу, то рыбки к вам повернутся и посмотрят, что же за «умник» там стучит. Если кто-то из идущих позади вас прохожих шумно споткнется и чертыхнется, вы обязательно обернетесь узнать, что случилось. И сделаете это раньше, чем осознаете шум. Ориентировочный рефлекс запускается с уровня, который не очень подчиняется большим полушариям. С помощью осознанного контроля его порой непросто блокировать, сохраняя невозмутимость в ситуациях, когда вокруг происходит что-то интересное, важное, необычное. Прямо как те крутые герои боевиков, которые не оборачиваются на взрыв. Помните: это — фантастика.
Четверохолмие — вот так неожиданность — состоит из четырех холмиков: пары верхних и пары нижних. Верхние — самый древний зрительный центр нашего мозга, сюда приходит информация от сетчатки, а нижние, соответственно, — самый древний слуховой центр. Эти центры не анализируют детально зрительные и слуховые сигналы, а просто сравнивают то, что было совсем недавно, с тем, что происходит вокруг нас сейчас. Если зафиксировано изменение, тогда и запускается ориентировочный рефлекс. Кроме зрительных и слуховых сигналов, сюда, в четверохолмие, приходят и другие оповещения от органов чувств. Например, кожная чувствительность: если кто-то вас трогает за плечо, вы повернете глаза и голову, пытаясь понять, это так поздоровался ваш старый приятель или над вами просто пролетала птичка. Или, допустим, когда появляется новый запах, мы начинаем озираться, чтобы собрать больше данных о его источнике.
Сбор новой информации — первейшая цель ориентировочного рефлекса.
Когда мы поворачиваем глаза и голову в сторону непривычного звука, то приводим нашу зрительную и слуховую систему в оптимальное положение. Например, если в углу комнаты кот зашуршал пакетом, нам надо на него посмотреть — тогда сетчатка (а точнее ее центральная зона) детально просканирует изображение. Прямо как у робота. Уши при этом окажутся на равном расстоянии от шуршащего объекта — так, чтобы оптимально считать звуковую информацию, ее частотные характеристики. У многих млекопитающих по несколько мышц связано с каждым ухом, и они очень хорошо ими двигают, определяя источник звука, даже не поворачивая головы. Когда мы окликаем лошадь или собаку, хорошо видно, что их уши, как локаторы, поворачиваются в сторону звука. К тому же каждое ухо способно жить «своей жизнью». Собака может левым слушать хозяина, а правым не упускать того, что творится за забором. У человека же способность двигать ушами сохранилась лишь в рудиментарной форме: пользы уже никакой, но выглядит забавно.
На нейронном уровне четверохолмие неплохо изучено. Еще в прошлом веке здесь были обнаружены нейроны, названные детекторами новизны. Они отвечают за сравнение текущего сигнала с тем, который был «только что» — доли секунды назад (на схеме в нижней части рис. 3.1 обозначены ДН — детекторы новизны). Сенсорный сигнал передается на ДН по двум каналам — напрямую и через тормозной интернейрон (ТИ). Запуск ориентировочного рефлекса происходит при несовпадении этих информационных потоков. «Только что пирожками не пахло, а теперь пахнет, хм… Надо разобраться».
Если обстановка вокруг не меняется и ничто не воздействует на органы чувств (или воздействует равномерно: например, мы привыкли к тому, что соседи наверху уже полчаса стучат молотком), то прямой вход на детекторы новизны и вход через тормозной интернейрон «обнуляют» друг друга: торможение компенсирует возбуждение. Однако если сенсорный сигнал внезапно усилится (разочаровавшись в молотке, соседи достали перфоратор), то в возбуждающем синапсе тут же начнет выделяться больше нейромедиаторов — как мы помним, это «курьеры», доставляющие информацию между нейронами. И при усилении сигнала из внешней среды этих «курьеров» становится больше. Тормозной синапс отреагирует позже, поскольку сигнал на ТИ, как видно на схеме, попадает через цепочку возбуждающих нервных клеток. Каждый синапс — это задержка во времени на 5, 10 и более миллисекунд, поэтому тормозная «копия» немного запаздывает (на то она и «тормозная»). В итоге при резком усилении сенсорного сигнала возбуждение на детекторе новизны превышает торможение. Совсем на короткое время — но его вполне достаточно, чтобы вызвать электрические импульсы на мембране ДН и запустить, собственно, ориентировочный рефлекс.
Мы рассмотрели самый простой вариант нейросети, реагирующий на новизну. Она работает, только если сигнал появляется впервые или резко усиливается, когда мы уже вроде бы привыкли к его присутствию. В четверохолмии есть и более сложные нейронные системы, реагирующие на уменьшение интенсивности сигнала (перфоратор сменился на шуруповерт), на движение его источника в пространстве (соседи перешли в другую комнату) и прочее. Четверохолмие — блок нервной системы, который позволяет изучать любопытство на самом простом уровне: мозг рыб, амфибий. Хотя этот уровень, конечно, свойственен и человеческому мозгу.
Не будем также забывать о том, что фактор новизны важен и для получения положительных эмоций. Вы не всегда успокоите плачущего ребенка конфеткой, а вот новой, даже не очень крутой игрушкой — почти наверняка. Тут уж ему будет не до слез — он моментально переключится на внезапный подарок. Наш мозг очень любопытен, в том числе и на уровне среднего мозга.
Теперь немного подробнее поговорим о глазах. Наши глаза выполняют два основных типа движений — слежения (плавное перемещение взгляда) и саккады (быстрые скачки). В их основе — врожденные программы, на которые «накладывается» обучение в первые месяцы жизни. Этот учебный процесс реализует древняя часть мозжечка — червь, который уже упоминался в первой главе в контексте автоматизации вестибулярных рефлексов.
Анализ движений глаз в ходе научного эксперимента позволяет детально отследить ориентировочный рефлекс «в действии» и понять, как перемещается взор при рассматривании того или иного объекта. Эта информация помогает определить, какие части картинки наиболее важны для человека, а какие — не очень значимы, в какой последовательности считывается визуальная информация, с какой скоростью и так далее. В XX веке для исследования этой темы движения глаз записывали на кино — и видеопленку, а потом анализировали весьма сложным образом. Попробуй-ка, отсмотри и зафиксируй каждое микродвижение на записи! Сейчас же существуют ай-трекеры (eye-tracker) — видеокамеры с адаптированными программами, которые сразу строят схему как слежений, так и саккад, и анализируют их параметры.
Так, можно увидеть, что когда мы разглядываем кого-то в профиль, основное внимание уделяем носу, глазам, губам — то есть субъективно существенным элементам картинки. Довольно интересным образом мы читаем текст: взор прыгает в начало строки (крупная саккада) и дальше не движется непрерывно от буквы к букве, а делает примерно шесть-семь небольших скачков (мини-саккад), за которые строка прочитывается целиком. В эпоху новостных лент в соцсетях мы и вовсе не читаем, а сканируем большинство статей — у копирайтера есть всего один абзац, чтобы завладеть вниманием пользователя, потому что дальше он зигзагообразно «пробегает» глазами по тексту и, если ему скучно, проходит мимо.
Все это любопытно и важно для современных задач, связанных, например, с маркетингом, компьютерной техникой. Так, исследователь может объективно оценить, как пользователь рассматривает страницу рекламного сайта, например, строительной компании. Насколько интересны и привлекают взор ключевые элементы: перечень услуг, цены, контактная информация, отзывы? Верно ли расставлены визуальные якоря? Как долго на них задерживается взгляд? От этих факторов зависит, с какой вероятностью посетитель сайта примет решение, стать ли ему клиентом этой компании.
Оценка процесса рассматривания картинок — окно в бессознательное.
Таким же образом можно исследовать возрастные, половые и социальные различия. Авторы одной из работ обнаружили, что женщины и мужчины по-разному рассматривают рекламу кроссовок, надетых на полуобнаженную девушку. Мужчинам кроссовки оказываются, прямо скажем, «до лампочки», они и не вспомнят название бренда (в маркетинге такое отвлечение от основного рекламируемого объекта называют эффектом вампира). А женщины все-таки смотрят на обувь. Они уделяют ей внимание, почти такое же, что и особенностям фигуры фотомодели, — значит, отдел маркетинга компании решил, что их основная целевая аудитория — женщины.
При выборе одного товара из нескольких покупатель обычно берет тот, на котором изначально остановился его взор. Причем это происходит в течение первой же секунды рассматривания полок. Далее «сканирование» зрительного пространства может продолжаться, но анализ показывает, что в это время высшие центры коры всего лишь обосновывают тот выбор, который уже сделан на бессознательном уровне.
Подобные исследования являются частью весьма интересной современной науки, которая называется нейромаркетинг и существует на стыке экономики, физиологии и психологии.
Поисковое поведение
Переходим к следующему блоку мозга, связанному с поисковым поведением и перемещением в пространстве. Это прежде всего субталамус — структура, которая находится между таламусом и гипоталамусом в задней части промежуточного мозга. Но сперва немного поговорим о таламусе и гипоталамусе. Оба они работают с новой информацией.
Гипоталамус — главный центр эндокринной и вегетативной регуляции, отвечающий за множество биологических нужд: голод, жажду, страх, агрессию, половую и родительскую потребности. Это такой диспетчер огромной транспортной системы, который пытается сохранить баланс на всех направлениях и не допустить аварий.
Таламус — центр, фильтрующий сигналы и обеспечивающий кору больших полушарий актуальной информацией (по сути — центр внимания). Работая по заказу коры больших полушарий, таламус из огромного сенсорного потока выделяет первоочередные в данный момент оповещения от органов чувств: зрительные, слуховые, тактильные. Так у нас в голове не возникает какофонии и переизбытка ощущений, это называется произвольным вниманием. Но таламус учитывает еще и сигналы четверохолмия. Оно, как мы уже говорили, считывает из окружающей среды новую информацию, но в итоге не только запускается ориентировочный рефлекс, но сигнал идет в таламус. И таламус именно для этой информации открывает проход без очереди в кору больших полушарий. Кора отвлекается от того, чем была занята, и, «бросив все», спешно анализирует новые данные.
С точки зрения человеческой деятельности, например обдумывания рабочего проекта или решения сложной математической задачи, — такая потеря фокуса внимания, конечно, не очень уместна. Еще И. П. Павлов указывал, что отвлечение мешает процессам обучения, и назвал его внешним торможением. Но, поскольку это действительно новая информация, оповещение о том, что кто-то шлындает мимо двери или сосед вдруг начал долбить стену перфоратором, получает приоритет. Кора больших полушарий просто вынуждена заниматься анализом нового сигнала (непроизвольное внимание).
Гипоталамус — один из главных генераторов эмоций. Помимо уже перечисленных центров потребностей, в нем находятся центры положительных и отрицательных эмоций. Часть позитивных впечатлений, которые генерируются при узнавании нового, имеют именно гипоталамическое происхождение.
Кроме того, гипоталамус как центр многих потребностей зачастую служит для субталамуса источником активации.
Субталамус — центр поискового поведения, он отвечает за запуск и ускорение локомоции — перемещения в пространстве.
Очень важно, что исследовательское поведение часто предшествует удовлетворению какой-то актуальной потребности. Урчит в животе от голода — придется встать из-за компьютера и пойти на кухню добывать еду. Стало тревожно — нужно изменить местоположение в пространстве, покинуть зону тревожности. Захотелось размножаться — придется поискать потенциального партнера, может быть, он совсем недалеко.
Совершить какое-то действие, например встать с условного дивана и пойти на поиски «приключений», — это очень важный начальный компонент в процессе удовлетворения большинства нужд. Получается, что центры многих потребностей сбрасывают активирующий сигнал на субталамус, и он в итоге запускает перемещение в пространстве. В ходе этого перемещения собираются неизвестные ранее сведения. Узнавание чего-то нового — это сам по себе источник положительных эмоций, но из этой информации выбираются те сигналы, которые позволят удовлетворить неотложную потребность. Например, поесть или оказаться в безопасности. Эти сигналы направляют траекторию движения, и, таким образом, шансы достичь необходимой цели растут.
Получается, что локомоция является начальной стадией на пути удовлетворения очень многих потребностей. При этом сама локомоция и те сведения, которые собираются по ходу перемещения в пространстве, тоже являются источником положительных эмоций. А для того чтобы уйти из точки А в точку Б, нужно сгибать и переставлять ноги, лапы или махать крыльями.
С удовольствием перемещаются и ищут что-то новое все высшие позвоночные. Иногда это поиск информации в чистом виде. Запустите кошку в квартиру, где она раньше не была, — она обойдет весь периметр, обнюхает углы, соберет полные сведения о неизведанном пространстве на всякий случай. И поточит когти о новый диван. Напомним, что это — программы саморазвития. Мало ли что таится в незнакомом месте: может быть, еда, а может, и опасность. Даже если не будет ничего очевидно важного, все равно сбор новой информации — это позитив.
Для запуска локомоции субталамус передает сигналы к центрам передних и задних конечностей (рук и ног — у человека), которые находятся в шейных и поясничных сегментах спинного мозга. Кора больших полушарий без проблем управляет субталамусом — это произвольный контроль локомоции. Также на него влияют центры различных потребностей, в том числе исследовательской, а еще эмоции и даже стресс.
Поисковое поведение открывает программы удовлетворения многих наших нужд. И наоборот, отсутствие поиска — это чаще всего нехорошо. Этот случай, кстати, хорошо описывает русская пословица: «Под лежачий камень вода не течет». Для того чтобы исполнилась ваша «хотелка», нужно пошевелиться: поднять себя и куда-то пойти. Хотя бы изменить свою локализацию в пространстве, а это невозможно без ритмичного сгибания и разгибания конечностей.
Субталамус оказывает на центры передних и задних конечностей спинного мозга общее тоническое воздействие. Пока млекопитающее или человек неподвижен, активность нейронов субталамуса мала: не больше 10–20 импульсов в секунду. В тот момент, когда из субталамуса начинают поступать импульсы с частотой 30–40 Гц, включается шаг, представляющий собой сгибание и перенос вперед последовательно каждой из четырех (или в нашем случае двух) конечностей.
Если понаблюдать, как вышагивает кошка или собака, мы увидим, что все начинается, как правило, с одной из задних лап. Сперва задняя правая лапа перемещается вперед и встает на опору, перенося тело в пространстве. Потом движется передняя лапа с той же стороны, затем задняя левая, передняя левая. И без каких либо пауз цикл запускается вновь — опять движется задняя правая, передняя правая — и так по кругу. Точнее, «по восьмерке». Вот так и нервное возбуждение движется «по восьмерке», чтобы перемещаться в пространстве, — и животное идет. Отличный слаженный «марш» конечностей! Замкнутый контур «задняя правая → передняя правая → задняя левая → передняя левая» — врожденная локомоторная программа. Эти связи с момента появления на свет функционируют в спинном мозге, и сигнал только переходит с центра на центр. Из головного мозга (из субталамуса) поступает лишь общая активирующая команда.
Эти древние программы работают у всех наземных позвоночных, начиная с амфибий (например, тритонов). Есть они и у человека. Именно поэтому мы машем руками, когда ходим, причем рука немного отстает от ноги. Эти движения, от которых человеку нет никакой видимой пользы, являются, по сути, физиологическим рудиментом. Они достались нам от наших четвероногих предков и возникают, поскольку «по восьмерке» активируются центры спинного мозга. Можете провести эксперимент и пройтись на четвереньках, начав движение с задней правой ноги. Так сказать, прильнете к далеким корням.
Если вы захотите не махать руками при ходьбе, придется тратить на это дополнительную нервную энергию — концентрировать свое внимание: «Держи руки вдоль тела, держи руки вдоль тела». В общем, проще махать, чем не махать. Вот так люди и ходят, демонстрируя свою неизменную принадлежность к миру древних четвероногих.
Шаг — это самый медленный способ локомоции. Существуют другие, более быстрые варианты перемещения в пространстве. При дальнейшей активации субталамуса до частоты разрядов 50–70 Гц спинной мозг дает команду перейти на рысь, и организм начинает одновременно сгибать заднюю и диагональную переднюю лапы. То есть правая задняя сгибается и отталкивается от опоры одновременно с левой передней; потом также одновременно срабатывают левая задняя и правая передняя; а потом цикл повторяется. При частоте разрядов 80–100 Гц начинается еще более быстрый аллюр — галоп, при котором одновременно сгибаются и разгибаются две задние, а потом две передние конечности, плюс мощно работает спина. Если вы хоть раз смотрели передачу о дикой природе, где показан, например, стремительный бег гепарда, вы живо себе это представите.
Люди из-за своей двуногости нормально галопировать не способны, поэтому даже наши олимпийские чемпионы в спринте бегают рысью — их руки совершают диагональные движения по отношению к ногам. Хотя, когда маленькие дети учатся ползать и бегать на четвереньках, они пробуют все перечисленные аллюры, ведь все эти замкнутые нейронные контуры врожденно существуют в нашем спинном мозге. Галопирование у человека — это бег в мешках. Попрыгайте с двух ног и обратите внимание, как синхронно (и в противофазе к ногам) будут двигаться ваши руки. А еще есть стиль плавания, который называется баттерфляй. Это, по сути, галоп в воде — вот на такое мы способны. Дельфины и киты тоже плавают галопом (прыжками), изгибая тело сверху вниз, — ведь их предки когда-то были сухопутными, но однажды решили вернуться в океан. А вот рыбы так не могут — они плавают, изгибаясь в горизонтальной плоскости: у их предков никогда не было опыта хождения по твердой земле.
Поговорим немного о конкуренции потребностей. Итак, есть любопытство и положительные эмоции, которые возникают, когда мы узнаем что-то новое. Но при этом, поскольку одновременно работают центры других потребностей, любопытство зачастую может вступать с ними в конфликт. Оно конкурирует с ленью и, что тоже часто встречается, с оборонительным поведением: вроде интересно, но страшно; страшно, но все-таки интересно.
Например, услышав невдалеке звуки драки, человек автоматически оценивает баланс между любопытством и потенциальной опасностью. «Точка равновесия» такого баланса индивидуальна для каждого конкретного мозга: один пойдет, рискуя получить по голове, а другой поспешит ретироваться. Соотношение между тревожностью и стремлением к новизне — очень важная личностная характеристика. Психологи предложили модель «Большой пятерки», в которой структура личности рассматривается через призму экстраверсии, невротизма, доброжелательности, добросовестности, а также открытости опыту. Первый и особенно последний факторы очевидно связаны с исследовательским поведением, любопытством; второй — с программами страха и тревоги.
Соотношение исследовательских и оборонительных программ можно изучать и на экспериментальных животных. Существуют специальные тесты, которые используют физиологи и фармакологи, чтобы оценить действенность лекарственных препаратов, уменьшающих тревожность (транквилизаторов).
Один из тестов выглядит так: есть платформа в виде знака «плюс» — крестообразный лабиринт, подвешенный на высоте 1 метра. Два противоположных рукава лабиринта прикрыты с боков экранами, и в них относительно темно и комфортно, эдакие укромные местечки. Два других рукава лишены боковых стенок (то есть открыты) и ярко освещены. Если посадить крысу в самый центр, то сначала она уходит в темный отсек: там она чувствует себя в безопасности. Но, поскольку крысы любопытны почти так же, как и люди, животное довольно быстро начинает посещать открытые рукава. Ей там интересно, но все-таки страшно. И когда смелость кончается, крыса опять прячется в один из темных отсеков. Тест длится 10 минут, и по тому, сколько времени грызун провел в темных и светлых отсеках, определяется уровень тревожности животного. И чем он выше, тем меньше времени крыса проводит в светлых рукавах — не хочется ей быть на виду. Если же ей дать препарат, уменьшающий тревожность, — транквилизатор (или, иначе, анксиолитик), она может стать более «оптимистичной» и больше времени проводить на открытых рукавах. Теперь они кажутся ей более безопасными, а значит, их можно изучать и обнюхивать. Все это исследователи оценивают, проводя статистический анализ не одного, а, как правило, нескольких десятков грызунов. И опираясь на результаты, могут рекомендовать ту или иную молекулу транквилизатора для дальнейших испытаний в клинике.
С использованием уменьшающих тревожность препаратов важно не переборщить, поскольку если сделать существо абсолютно бесстрашным, ему будет нехорошо. В нас должен сохраняться разумный баланс исследовательского и оборонительного поведения: бежать на любой шум «с шашкой наголо» попросту опасно. Как и крысе быть всегда на виду — пусть не в лаборатории, но в естественных условиях. Хорошие транквилизаторы очень аккуратно уменьшают именно тревожность, а любопытство само по себе не активируют. В случае эксперимента на крысах мы видим, что баланс смещается и животные действительно больше времени находятся на светлых рукавах — но все же не постоянно.
У людей стремление собирать новую информацию, как и любая другая потребность, может быть выражено «в пределах нормы», но иногда проявляется слишком слабо. В этом случае мы говорим: «Этого товарища вообще ничем невозможно заинтересовать, перед ним такой интересный мир, а ему все равно». Бывает и наоборот: желание новизны приобретает слишком активированную форму, и тогда человек становится непоседливым: поработал на одной работе и бросил, когда стало скучно. Ищет другую и тоже бросает. Пожил в одном городе — приелось, переехал в следующий. Такие люди могут в конце концов стать бродягами, потому что вообще не нуждаются в какой-либо стабильности. Перемещение в пространстве для них — важнейший источник положительных эмоций, вдобавок оно сцеплено с тягой к свободе. В психиатрии это называется дромомания, то есть патологическое стремление к перемене мест и бродяжничеству.
Им овладело беспокойство, / Охота к перемене мест… — писал А. С. Пушкин про Онегина. Значит, и у Евгения был приступ дромомании.
Если рассматривать с этой точки зрения русские народные сказки, то, конечно, классическим «непоседой» является Колобок, который и от бабушки ушел, и от дедушки ушел. И вообще старался побыстрее отовсюду укатиться, пока дело не кончилось лисьей пастью. Тем не менее Колобок вызывает у нас симпатию своей непосредственностью, неуемным любопытством и стремлением убежать куда-то за горизонт…
Гиппокамп и кратковременная память. Новую информацию, которая проникает в мозг во время поискового поведения, например во время обхода и исследования новой территории, оценивает прежде всего гиппокамп — очень важная структура, часть старой коры больших полушарий и главнейший центр кратковременной памяти.
Благодаря гиппокампу поисковое поведение подкрепляется положительными эмоциями, если приносит новую информацию.
Находится гиппокамп у нас в глубине височной доли (рис. 3.2, вверху).
У человека в височных долях правого и левого полушарий расположены два гиппокампа. Аксоны нейронов каждого из них собираются в специальную структуру, которая называется свод. Информация по своду, переключаясь в промежуточном мозге, в конце концов достигает новой коры больших полушарий. А поступает она в гиппокамп также из новой коры, переключаясь сначала в поясной, а затем в зубчатой извилине.
Рис. 3.2. Структуры больших полушарий, участвующие в исследовательском поведении: гиппокамп, поясная извилина, прилежащее ядро. Схема внизу позволяет четче представить, что гиппокамп — это парная структура, расположенная в глубине височной доли
Гиппокамп является важнейшим центром кратковременной памяти. В нем находится множество нейронов, которые реагируют на эмоционально значимые и новые сигналы таким образом, что нейросети, использующие свод, записывают сведения об этих сигналах на несколько часов. Это еще можно назвать «памятью текущего дня», которая начинает формироваться с утра, а ночью, во время сна, как правило, стирается. Тогда гиппокампальная информация либо перезаписывается в долговременную память, либо, если значимость ее невелика, пропадает совсем. Накануне после работы вы забежали в магазин у дома за молоком. Утром оно вам не понадобилось, вы вообще забыли, что ходили в продуктовый, и сегодня вечером пошли туда снова. Теперь у вас два пакета молока. От обиды на самого себя мозг сгенерировал эмоции. И завтра вы про молоко уже, скорее всего, не забудете.
Исходно гиппокамп в ходе эволюции возникает именно как структура, связанная с локомоцией и перемещением в пространстве. Изначальная его функция — это запомнить траекторию движения. Например, вышло животное из норки и пошло сначала прямо, потом немного направо, потом опять прямо, а дальше немного налево. Именно это записывается в гиппокампе, для того чтобы в случае необходимости можно было быстро вернуться домой и желательно — кратчайшим путем.
Гиппокамп возник именно для записи пространственной памяти. У лягушек и ящериц он в основном только этим и занимается. На уровне птиц и млекопитающих гиппокамп уже начинает работать со зрительными и слуховыми сигналами.
Появляется гораздо больше сенсорных входов, но все равно важнейшей характеристикой событий и стимулов, которые записываются в гиппокампе по ходу дня, является, конечно, новизна. В нем в первую очередь сохраняется незнакомая эмоционально значимая информация. Вот если бы вы пошли за молоком не в магазин у дома, где бываете по несколько раз в неделю, а в какой-то новый продуктовый — вы бы это лучше запомнили.
Гиппокамп в поперечном срезе похож на морского конька. Ippos в переводе с греческого языка означает «лошадь, конь». У нейроанатомов прошлых веков вообще была очень причудливая фантазия, они иногда весьма неожиданно называли всякие структуры. На рис. 3.2 внизу изображены два гиппокампа человека и их своды. Что характерно для гиппокампа как структуры, связанной с новизной и кратковременной памятью?
Во-первых, у него довольно небольшая информационная емкость, что характерно, кстати, и для компьютеров: у них оперативная память обычно гораздо меньше, чем постоянное запоминающее устройство. Например, 8 Гб оперативки против 500 Гб памяти устройства. Разница существенная — вот и у нас так же. Гиппокамп — это наша оперативная память. Поэтому ее может не хватить, например, на запоминание материала третьей или четвертой лекции за день. Первая воспринимается со свежей головой, на второй уже могут начаться проблемы. Эту особенность еще называют эффектом музея.
Представьте себе, что вы пришли в Эрмитаж или даже в Лувр, ходите по залам и любуетесь картинами, скульптурами, интерьером. Вначале вам все кажется прекрасным, вызывает интерес и восторг. Так проходит час или два, на третий вам становится хуже, и скоро полотна Рубенса и Тициана начинают сливаться в однотипные цветастые пятна, да простят меня эти великие художники. Уже хочется куда-нибудь уйти, например в буфет за бутербродом или пирожным. Конечно, мозг у всех разный, и у некоторых счастливчиков такие замечательные гиппокампы, что эти любители прекрасного могут и пять, и шесть часов ходить по Лувру, а перед ужином забежать еще в галерею-другую. Но это — редкое исключение, и обычно пары часов в музее хватает «выше крыши».
Несколько слов о деятельности гиппокампа и сновидениях. Наши сны, по всей видимости, в значительной мере являются результатом ночной переработки информации гиппокампом.
Как мы уже говорили, информация в гиппокампе обычно хранится в ходе текущего дня, а ночью она либо переписывается, либо теряется. Как если бы человек написал текст в программе Word, а потом забыл сохранить файл и выключил компьютер. И этот документ пропал. Примерно так же с гиппокампом: для того чтобы информация записалась надолго, необходимо нажать кнопочку Save. Это значит, что из гиппокампа информация должна переписаться в долговременную память, а это уже другие зоны мозга — прежде всего нейросети новой коры. Сновидения, которые мы видим, часто являются следствием такой функции гиппокампа: перезаписи кратковременной памяти в долговременную. Чем интересней был день, тем больше сновидений у нас ночью и тем дольше длится так называемая парадоксальная фаза сна.
А теперь о гиппокампе и нейронных «картах местности». Для организма новизна — это хорошо, ведь осваиваются и изучаются неизведанные территории, и в мозге возникают их «отражения» (латентное обучение). Но слишком много новизны — плохо: если животное уходит очень далеко, растет риск заблудиться.
В 2014 году именно за работы с гиппокампом и связанными с ним структурами (прежде всего — энторинальной корой), которые «строят карты местности», была вручена Нобелевская премия по медицине и физиологии: «За открытие системы нервных клеток, которая позволяет ориентироваться в пространстве». Доказано, что гиппокамп содержит «нейроны места» и участвует в запоминании траектории движения. Энторинальная кора (зона недалеко от обонятельных центров) накладывает такую траекторию на систему координат, привязанную к глобальным ориентирам и сигналам от системы мышечной чувствительности (оценка длины пройденного пути). Говоря проще, гиппокамп выступает в роли заброшенного на остров Робинзона, который составляет карту острова: «Вон там гора, у подножия растут бананы. Правее горы есть водоем с пресной водой». Энториальная кора же — это навигатор, который сообщает: «От текущей геопозиции до подножия горы ты прошел три километра на северо-восток».
И когда два этих блока информации соединяются, мозг получает возможность сократить дорогу, причем не только «обратно», но и «туда». «Если пройти прямиком через джунгли, путь до бананов сократится до полутора километров». Это позволяет экономить силы, более эффективно уходить от опасности и преследовать добычу.
Впрочем, все, как всегда, несколько сложнее, и наряду с гиппокамп-зависимыми формами пространственного обучения выделяют гиппокамп-независимые (в том числе наблюдаемые в клинике при двустороннем повреждении «морского конька»).
Манипуляция с предметами
Переходим к третьему варианту исследовательского поведения — манипуляции с предметами. Очевидно, что для того, чтобы это делать, нужна рука. В основе термина «манипуляция» лежат латинские слова — manus (рука) и pleo (наполняю).
Человек не просто проходит мимо предмета и осматривает его со всех сторон, а берет в руки, начинает вертеть, раскручивать, разламывать. Это очень важное умение человека и человеческого мозга. Такое же свойство есть у обезьян и еще у енотов-полоскунов: они много взаимодействуют с предметами, их пальцы и кисть очень ловкие.
Манипуляция — эволюционно новый вариант исследования мира. Информация генерируется путем взаимодействия с предметами за счет воздействий на объекты окружающей среды. При этом мы смотрим, что делаем, а также ощущаем кожей особенности поверхности — металл на ощупь совсем не такой, как камень или дерево. Идет обработка в зрительной и тактильных зонах новой коры, сравнение реальных и ожидаемых результатов деятельности.
Стремление ребенка все раскрутить, разобрать и посмотреть, что внутри, — очень важная врожденная программа. Вы, конечно, можете ругать его за то, что он ломает игрушки, но, пожалуйста, не нужно перегибать палку. Если ругать ребенка слишком сильно, можно вообще отбить у него охоту к исследовательскому поведению. А потом сетовать на то, что ему ничего не интересно.
Надо понимать: если ребенок что-то ломает, это не столько его злой умысел, сколько проявление активности важнейшей врожденной программы сбора новой информации. Нужно снисходительно и с пониманием относиться к таким формам поведения.
Для того чтобы рука совершала какие-то движения, требуется участие лобной доли коры больших полушарий. Манипуляции с незнакомыми предметами — это еще один тип произвольных движений: новых и в новых условиях. Лобная доля управляет ими, используя сенсорный — зрительный и тактильный — контроль.
Выделяются следующие этапы любого произвольного движения (см. рис. 7.3 в главе 7):
1. Выбор общей программы (цели) движения: ассоциативная лобная кора.
2. «Разбиение» программы на совокупность входящих в ее состав движений: премоторная кора (поле 6 по классификации К. Бродмана[4]).
3. «Разбиение» движений на сокращения отдельных мышц и запуск этих сокращений: моторная кора (поле 4).
Поле 4 соседствует с центральной бороздой и идет сверху вниз по заднему краю лобной доли; поле 6 находится непосредственно перед полем 4. Вместе они составляют двигательную кору, о которой говорилось в главе 1.
Получается, что сигнал о запуске произвольного движения распространяется по лобной доле спереди назад и проходит три достаточно четкие стадии. Простейший вариант манипуляции: вы хотите, например, взять книгу с полки и поднести ее к глазам, чтобы лучше рассмотреть. Этапы реализации этой двигательной программы будут таковы:
1. Сначала должна активироваться сама программа. Возникает потребность взять предмет, происходит глобальная постановка задачи: «Вон та книга с синей обложкой, интересно» — этим занимается ассоциативная лобная кора, самая передняя часть лобной доли.
2. Программа должна превратиться в цепочку движений. Чтобы взять книгу, надо сначала разогнуть руку и дотянуться до полки, разжать пальцы, потом сжать их, захватив предмет, и согнуть руку — этим занимается премоторная кора. Она превращает программу в комплекс движений, часть из них реализуется последовательно, часть — параллельно.
3. Моторная кора превращает каждое из движений в набор мышечных сокращений разной силы и скорости. Для того чтобы разогнуть руку и потянуться, нужно одновременно задействовать плечевой, локтевой и лучезапястный суставы, около десятка мышц и тысячи мотонейронов. Эти мотонейроны и управляемые ими мышечные волокна должны работать синхронно, скоординированно.
Когда ребенок только учится двигаться, в том числе шевелить руками, кистью, пальцами в первые месяцы жизни, для него даже простейшие движения очень сложны. Ему нелегко полностью разогнуть суставы, дотянуться до чего-нибудь. Например, для малыша попасть по погремушке — это небольшой мозговой подвиг, потому что огромное количество нервных клеток должно сработать в правильном порядке. Вдобавок это движение происходит с учетом тактильных сигналов и оповещений от системы мышечной чувствительности: растяжение мышц, сухожилий, углы поворота суставов.
В итоге тонкое движение, так называемая мелкая моторика, оказывается сложной задачей, которую успешно способен решать только весьма развитый мозг. Но даже после того, как человеку удалось дотянуться до предмета, основная часть «шоу», можно сказать, только началась.
Контроль успешности выполнения выбранной программы действий в большой степени осуществляет поясная извилина — важнейшая область лимбической доли коры больших полушарий.
Реализовав движение, мы собираем информацию о его результатах, и дальше поясная извилина начинает их оценивать.
Поясная извилина (см. рис. 3.2) находится на внутренней поверхности больших полушарий над мозолистым телом. В ней, судя по всему, происходят основные процессы сравнения «ожидания и реальности» от итогов текущего поведения.
Мы наконец-то взяли с полки заветный томик, но ухватились за него неудобно, книга оказалась тяжелее предполагаемого — и вот она готова выскользнуть из пальцев и упасть на пол. Эту новую информацию оценивает прежде всего поясная извилина. Она реагирует на то, что произошло нечто необычное.
Дальше именно она способна влиять на покрышку среднего мозга, которая подкрепляет исследовательское поведение, создает позитивный эмоциональный фон для того, чтобы мы продолжили исследовать предмет. Поясная извилина в значительной степени обеспечивает сравнение реальных (информация от органов чувств) и ожидаемых (память о предыдущих успешных реализациях программы) результатов поведения. В сильно упрощенном виде алгоритм ее работы можно описать так:
1. Уровень совпадения достаточно высок, мы взяли книгу так, как и ожидали, — крепко и удобно. В этом случае ассоциативная лобная кора получает рекомендацию продолжать программу. Параллельно сигнал поступает в центры положительных эмоций. Например, если, несмотря на приличный вес, книгу удалось удержать в руках, она стала ближе к нам, да и уже видно, что обложка симпатичная, и сейчас мы ее полистаем. Победа!
2. Уровень совпадения низок, ухватились неудачно, книга слишком тяжелая. В этом случае сигнал от поясной извилины поступает в центры отрицательных эмоций. Одновременно ассоциативная лобная кора получает рекомендацию по коррекции программы; например, что нужно задействовать вторую руку. Если это не поможет и книга таки упадет, негативные эмоции усилятся и ассоциативная лобная кора может вообще отказаться от выполнения программы. В примере с книгой такое, конечно, вряд ли случится — вы спокойно ее поднимете и продолжите рассматривать. Но бывают случаи, когда вы и правда готовы махнуть рукой: «Не очень-то и хотелось!». Например, потянулись за спелой сливой на ветке дерева, а она упала и расплющилась о землю…
Отрицательные эмоции могут возникнуть и тогда, когда с таким трудом добытый артефакт не оправдывает ожиданий: кроме большого веса у него не обнаруживается ничего нового, необычного. Оказывается, у вас есть дома точно такая же книга, вы просто не узнали ее по корешку. Вы почувствуете легкое, но разочарование.
Знак и конкретные параметры эмоций, в генерации которых участвует поясная извилина, весьма сильно зависят от темперамента человека: холерик, сангвиник, меланхолик и флегматик будут реагировать на описанную выше ситуацию совершенно по-разному. Например, холерик, у которого упала книга, легко может продемонстрировать агрессию: «Дурацкая книженция, чтоб тебя!». Еще и топнет. Меланхолик расскажет о приступе отрицательных эмоций и мыслях вроде: «Вот я растяпа, даже книжку с полки нормально взять не могу». Сангвиник больше всех обрадуется случившемуся: «Ух ты! Какая тяжеленная, аж в руках не удержал!». Флегматик может вообще не придать значения произошедшему, его мозг и поясная извилина не генерируют эмоции по мелким поводам.
Все мы разные, и наши эмоциональные реакции чрезвычайно индивидуальны. Но в любом случае поясная извилина обратится к ассоциативной лобной коре и спросит: «Шеф, сразу не получилось, что делать?» Ведь именно она должна принять решение — пытаться удержать крепче, использовать вторую руку, успеть добросить книгу до стола или просто плюнуть (виртуально) и сказать: «Да не очень-то и хотелось».
Разберемся, отчего же нам так нравится узнавать новое и не обязательно полезное? Почему мы порой сидим ночами в интернете и читаем про, казалось бы, всякую ерунду — начиная с истории крестовых походов и заканчивая десятью способами стирки тапочек? Какие мозговые процессы за этим стоят?
Ключевое вещество, с которым связана генерация положительных эмоций во время узнавания чего-то нового, — это дофамин, о котором мы уже говорили в контексте депрессивных состояний.
В случае исследовательского поведения дофамин играет очень важную роль. Этот нейромедиатор выделяется нейронами вентральной покрышки среднего мозга. Окончания аксонов этих нейронов идут в кору больших полушарий, прежде всего в лобную и теменную, а также в базальные ганглии.
В базальных ганглиях дофамин выделяется как в двигательных центрах, которые тесно связаны с субталамусом, так и в особых зонах, которые отвечают за итоговую генерацию положительных эмоций. Ключевой зоной среди них является прилежащее ядро прозрачной перегородки, или, по-латыни, nucleus accumbens (см. рис. 3.2).
Прилежащее ядро — в настоящее время самая известная и самая исследуемая структура в области нейрофизиологии эмоций и положительного подкрепления.
Под термином «положительное подкрепление» имеются в виду биологически (врожденно) полезные факторы, контакта с которыми мы стараемся достичь по ходу реализации поведения. Так, мы стремимся вкусно поесть, победить в соревновании, получить интересную информацию. Существует и понятие «отрицательное подкрепление» — биологически вредные стимулы, контакта с которыми мы стремимся избегать. Это, например, боль или отвратительный запах. Таким образом, мы испытываем позитивные эмоции, когда достигаем положительного или избегаем отрицательного подкрепления. Негативные же эмоции — если все наоборот. Нам не удалось пообедать или избежать неприятностей — мало кому это понравится.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги «Мозг и его потребности 2.0. От питания до признания» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других