Книга посвящена описанию холестеринового атеросклероза, являющегося фундаментом развития ИБС и инфаркта миокарда – заболеваний, которые преждевременно уносят жизнь миллионов людей, но которые, однако, можно предупредить, располагая знаниями о факторах риска развития атеросклероза.Читатель найдет полную характеристику всех факторов, ассоциированных с атеросклерозом, и понимание которых лежит в основе профилактики инфаркта миокарда.
Приведённый ознакомительный фрагмент книги Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 1. Холестериновая теория атеросклероза
Больше всего хранимого храни сердце твое, потому что из него все источники жизни.
Без холестерина нет и атеросклероза.
Атеросклероз и его последствия
Атеросклероз (от греч. athere — «кашица», skleros — «твердый») — это хроническое заболевание артерий, возникающее вследствие нарушения липидного обмена и характеризующееся отложением и накоплением в них холестерина и некоторых фракций липопротеидов с последующим образованием фиброзных бляшек на внутренней стенке кровеносных сосудов, которые уменьшают их просвет и нарушают кровообращение.
Атеросклероз коронарных артерий — основная причина ишемической болезни сердца (ИБС), возникающей из-за нарушения равновесия между коронарным кровотоком и метаболическими потребностями сердечной мышцы. Слово «ишемия» в переводе с латинского означает уменьшение кровотока (isho — «задерживаю», haima — «кровь»).
Хроническая форма ишемической болезни сердца — это стенокардия, которая подразделяется на впервые возникшую, стабильную и прогрессирующую. Латинское название стенокардии (Angia Pektors) переводится как «грудная жаба» и отражает субъективное ощущение больного, поскольку стенокардия характеризуется отчетливой болью за грудиной. При стенокардии во время физической нагрузки (даже при обычной ходьбе) возникает сжимающая жгучая боль. Приступы стенокардии проходят в течение 10—15 минут после прекращения физической нагрузки или приема нитроглицерина.
Острая форма ишемической болезни сердца — это инфаркт миокарда, возникающий вследствие острой закупорки коронарной артерии в результате образования тромба и характеризующийся некрозом (омертвлением) клеток сердечной мышцы. Развитию инфаркта на фоне стенокардии часто предшествует физическое или психическое перенапряжение. Наличие инфаркта подтверждается изменениями в кардиограмме и лабораторным исследованием крови на предмет содержания некоторых специфических белков крови, концентрация которых увеличивается при некрозе клеток.
Самым грозным проявлением атеросклероза сосудов головного мозга (церебрального атеросклероза) является инсульт. В основе ишемического инсульта лежит закрытие просвета артерии бляшкой или тромбом. Геморрагический инсульт (кровоизлияние в мозг) развивается при сочетании атеросклероза сосудов головного мозга с гипертонической болезнью.
Наконец, атеросклероз периферийных артерий приводит к перемежающейся хромоте и может завершиться гангреной нижних конечностей. Наш обзор посвящен только коронарному атеросклерозу.
В структуре смертности от болезней сердца на долю коронарной болезни сердца приходится 60% для мужчин и 40% для женщин, что подтверждает известное положение о том, что состояние сосудов — ключ к здоровью миокарда.
Выражения «сердечно-сосудистая система», «сердечно-сосудистые заболевания», которые мы будем использовать при изложении материала книги, отражают единство функционирования этих двух составляющих, что понятно современному человеку. Впервые термин «сердечно-сосудистая система» ввел в науку много лет назад Уильям Гарвей (1578—1657) — выдающийся английский медик, основоположник физиологии, впервые изложивший современный взгляд на систему кровообращения в организме человека.
Что касается гендерных различий формирования атеросклероза, то отмечается, что в возрасте 30—39 лет атеросклероз коронарных артерий выявляется у 5% мужчин и 0,5% — женщин, в возрасте 40—49 лет частота атеросклероза у мужчин втрое выше, чем у женщин, и только после 70 лет частота атеросклероза и ИБС приблизительно одинакова у мужчин и женщин. На причинах отмеченного различия мы остановимся в дальнейшем.
На всем протяжении изучения причин возникновения атеросклероза исторически существовало несколько теорий (гипотез), объясняющих природу этого заболевания. Каждая из теорий выдвигала свой ведущий (на медицинском языке — этиологический) фактор, обусловливающий зарождение атеросклеротического процесса. Сегодня в центре внимания исследователей атеросклероза остались теория липидной инфильтрации, или холестериновая теория (первично накопление липидов в сосудистой стенке), и теория дисфункции эндотелия (первично нарушение защитных свойств эндотелия), а также представления об атеросклерозе как воспалительном процессе.
Холестериновая гипотеза развития атеросклероза является сегодня одной из ведущих, поскольку в ней не только дано теоретическое описание развития процесса, но и потому, что сегодня собрано огромное количество фактов, свидетельствующих в пользу этой теории.
В качестве одного из эпиграфов к данной главе мы привели провозглашенный Н. Н. Аничковым лозунг: «Без холестерина нет и атеросклероза!». Спустя 100 лет после провозглашения этого лозунга известные эксперты в области атеросклероза добавили в это выражение ключевое слово: «Без холестерина нет и эпидемии атеросклероза». Разумеется, что «холестериновая» теория возникновения коронарного атеросклероза отражает лишь часть более широкой на самом деле картины развития сердечно-сосудистых заболеваний. Однако тот факт, что не менее 50% сердечных катастроф связано именно с ишемическим инфарктом, позволяет рассматривать холестериновую теорию как самостоятельную тему.
Разумеется, что лечение атеросклероза и его последствий — задача лечащих нас врачей. Однако «приобретение» атеросклероза, в особенности его развитие, во многом зависит от самих нас. Чтобы встретиться с проявлениями атеросклероза как можно позже (а еще лучше не встречаться совсем), необходимо приложить собственные усилия. Для этого необходимо располагать определенными знаниями об атеросклерозе как заболевании.
Итак, обратимся к рассмотрению холестериновой теории (концепции) возникновения атеросклероза и начнем с характеристики холестерина как основного «виновника» возникновения заболевания.
Холестерин и его функции
Среди различных уровней организации строения и жизнедеятельности человеческого организма важное место принадлежит клеточному уровню. Именно клетка является основой каждого органа. Основными структурными элементами самой клетки являются ее ядро, митохондрии и мембрана (оболочка). Эти структуры являются основой биохимической деятельности обмена веществ.
Ядро клетки является местом, где находится наша ДНК — молекула, гены которой управляют всей нашей жизнью. Об этом мы ниже поговорим при обсуждении генетических аспектов атеросклероза.
Митохондрия — это понятие долгое время оставалось сугубо академическим, поэтому в популярной медицинской литературе обычно не раскрываются происходящие в ней процессы (сложные для понимания рядового читателя) и ограничиваются ее характеристикой как «электростанции по производству энергии». Действительно, митохондрии являются энергетической основой жизни и центральным местом всех процессов, которые называются «обмен веществ» и благодаря которым мы живем. Поэтому рассмотрение процессов, сопровождающих развитие атеросклероза и инфаркта миокарда, без упоминания роли и функций митохондрий представляется нелогичным упрощением. Далее мы покажем, что митохондрии являются не только источником биоэнергии, но и играют ключевую роль в важнейших регуляторных физиологических процессах.
Клеточной мембране принадлежит исключительная роль в функционировании клетки, а, таким образом, и всего организма. Мембраны выполняют важные функции: барьерные, транспортные (перенос веществ), метаболические и другие. При этом важно отметить, что структурная организация и функции мембраны тесно связаны, а их изменения служат основой начала патогенеза многих болезней. В дальнейшем мы постараемся избегать сугубо медицинских терминов и определений, здесь же напомним читателю что патогенез (pathos — «страдание», «болезнь», genesis — «зарождение», «происхождение») — это учение о механизмах развития, течения и исходах болезней.
Какая же связь между структурой клетки и холестерином? А связь заключается в том, что одним из веществ, формирующих мембрану клетки, является холестерин. Суть в том, что в состав мембраны входят липиды, белки и другие вещества. Одним же из компонентов липидного слоя мембраны является холестерин, который вместе с фосфолипидами (в дальнейшем о роли фосфолипидов будем говорить отдельно) обеспечивает избирательную проницаемость клеточной мембраны для веществ, поступающих в клетку и выходящих из нее. Холестерин играет роль модификатора биослоя мембраны, придавая ему определенную жесткость за счет увеличения плотности упаковки молекул фосфолипидов.
Тот факт, что природа предусмотрела наличие холестерина как необходимого структурного элемента клетки, функционирование которой и означает нашу физическую жизнь, свидетельствует о том, что холестерин является жизненно необходимым веществом.
Холестерин относится к липидам (жирам) и в чистом виде представляет собой мягкое белое вещество без запаха. Холестерин является важнейшим в биологическом отношении липидом. Синтезируется в основном в печени (до 80%), в тонком кишечнике, частично в коже. Вырабатываемый организмом холестерин называют эндогенным, а поступающий с пищей — экзогенным. При этом две трети холестерина производится самим организмом, и только одна треть поступает с пищей. В организме взрослого человека содержится около 140 г холестерина, но распределен в тканях он неравномерно. Внутриклеточное содержание холестерина составляет около 90%, остальное в крови.
Холестерин используется не только для синтеза клеточных мембран. Кроме этого, определенные органы используют его для образования продуктов своего метаболизма (желчные кислоты, половые гормоны). Из холестерина в коже под действием света образуется витамин D. Миелиновое покрытие нервных волокон, выполняющее изоляционные функции, на 20% состоит из холестерина. Перечень полезных свойств холестерина можно продолжить.
Из физико-химических свойств холестерина здесь важно указать на его гидрофобность — он не смачивается водой и не растворяется в ней. Напомним также читателю, что холестерин не синтезируется в растениях, поэтому встречающаяся иногда реклама о продаже «оливок без холестерина», скорее всего, свидетельствует о безграмотности продавца.
Как правильно: холестерин или холестерол? При открытии это вещество первоначально было названо холестерином. После установления его принадлежности к спиртам стали называть «холестерол» (как этанол, метанол). Последнее название принято в большинстве стран, однако в ряде языков, в том числе и русском, сохранилось старое название.
Итак, холестерин является жизненно необходимым веществом. В то же время средства массовой информации утверждают, что холестерин является главной причиной возникновения атеросклероза. Демонизация холестерина достигла таких масштабов, что когда мы говорим «холестерин», то подразумеваем «атеросклероз», и наоборот, говоря «атеросклероз», — подразумеваем «холестерин». Каким же образом важнейший компонент нормальной физиологической деятельности организма одновременно является столь опасным для здоровья и жизни? Чтобы ответить на этот важный вопрос, следует знать суть «холестеринового» атеросклероза, к рассмотрению которого мы и сейчас обратимся.
Рецепторный механизм регулирования холестерина
Выше мы отметили, что холестерин является генетически обусловленным веществом. Без него организм существовать не может. Однако содержание его в организме должно поддерживаться в определенных пределах. В медицинской науке есть важное понятие гомеостаза, под классическим определением которого понимается постоянство внутренней среды организма. Параметры гомеостаза — это показатели, которые характеризуют состояние системы. Важнейшими параметрами гомеостаза применительно к человеческому организму является концентрация глюкозы в крови, артериальное давление, температура и т. д. Эти параметры и являются «мишенью» соответствующих систем саморегуляции, что и составляет суть процесса гомеостаза. Для холестерина также существует некий «нормальный» уровень содержания этого вещества в крови. Рассмотрим, каким образом в нашем организме поддерживается «правильный» уровень холестерина в крови. Почему у одних людей этот уровень «правильный», и для них вероятность развития атеросклероза мала, а у других он нарушен. При этом значительное превышение содержания холестерина по сравнению с «нормой» в большинстве случаев (но не всегда!) является признаком развития атеросклеротического процесса.
Гомеостаз, о котором мы упомянули выше, поддерживается обменом веществ, или метаболизмом. Обмен веществ, обеспечиваемый клетками, — важнейшее свойство всего живого. Отсюда следует, что различный уровень содержания холестерина в крови у различных людей обусловлен нарушениями метаболизма холестерина. Каким же путем осуществляется метаболизм холестерина?
Прежде чем перейти к обсуждению этого важного вопроса, следует рассмотреть, а каким образом холестерин вообще поступает в клетку. Мы знаем, что все питательные вещества в клетку попадают с кровью. Однако мы уже знаем, что холестерин является гидрофобным веществом, а плазма крови является водным раствором белков и минеральных солей, поэтому в свободном виде холестерин к клеткам по кровяному руслу не может поступать, поскольку он не смачивается водой.
Проблему транспортировки холестерина природа разрешила путем образования комплексов «холестерин + транспортный белок», именуемых липопротеидами (липопротеинами). Белково-липидный комплекс представляет собой сферические частицы, наружный гидрофильный слой которых образуют белки-апопротеиды, а ядро комплекса составляют липиды, включающие в себя и холестерин. Эти частицы, обладая гидрофильностью, могут путешествовать по кровеносным сосудам, перенося холестерин к клеткам тканей.
Выделяют следующие основные классы липопротеидов, отличающиеся по размеру, плотности, содержанию в них холестерина и белков: хиломикроны (ХМ), липопротеиды очень низкой плотности (ЛПОНП), липопротеиды низкой плотности (ЛПНП) и липопротеиды высокой плотности (ЛПВП). Среди перечисленных классов липопротеидов особого внимания заслуживают ЛПНП и ЛПВП, так как именно они имеют решающее значение в развитии атеросклероза. При этом по своему участию в атерогенезе (степени причастности к возникновению атеросклероза) указанные липопротеиды противоположно различаются.
Сегодня достоверно установлено, что ЛПНП осуществляют доставку холестерина к клеткам, а входящий в состав ЛПНП холестерин в анализе крови обозначают как «LDL Cholesterol» (холестерин липопротеидов низкой плотности). ЛПВП осуществляют эвакуацию избытков холестерина в печень и в анализе крови обозначаются как «HDL Holesterol» (холестерин липопротеидов высокой плотности).
Таким образом, как ЛПНП, так и ЛПВП выполняют свои отведенные им полезные функции. Тем не менее, ЛПНП считаются атерогенными (способствующими развитию атеросклеротического процесса) частицами, а холестерин, связанный с ЛПНП, в просторечии называют «плохим» холестерином. И наоборот, ЛПВП считаются антиатерогенными (препятствуют атеросклерозу) частицами, и входящий в них холестерин именуют «хорошим».
Почему же холестерин ЛПНП, выполняющих важнейшую задачу транспортировки холестерина к клетке, приобрел репутацию «плохого» холестерина? Ведь холестерин в составе ЛПНП и ЛПВП совершенно одинаков, эти комплексы отличаются лишь содержанием в них этого вещества. Частичный ответ нам даст рассмотрение механизма метаболизма ЛПНП, к которому мы и перейдем.
Итак, холестерин в составе ЛПНП по кровяному руслу транспортируется к клеткам, которые в нем нуждаются. Каким же образом частицы ЛПНП не проходят мимо клетки-мишени, нуждающейся в холестерине? Очевидно, что эта клетка должна каким-то образом «выхватить» именно частицы ЛПНП из кровяного русла, а поэтому должна быть снабжена для этих целей соответствующим «устройством».
Исследования различных аспектов холестеринового обмена показали, что таким «устройством» являются специальные рецепторы липопротеидов низкой плотности, расположенные на поверхности клетки-захватчицы. Сами же частицы ЛПНП имеют в своем составе соответствующие сигнальные белки. Такой белок, как структурный элемент ЛПНП, именуют аполипротеидомВ (АпоВ). ЛПНП посредством АпоВ связываются с рецепторами клетки и проникают в нее. Один рецептор связывает одну частицу ЛПНП, а общее число рецепторов на одной клетке-потребителе колеблется от 25 до 70 тысяч. Взаимодействие ЛПНП происходит в области специальных образований мембраны, получивших название окаймленных ямок. После связывания ЛПНП с рецепторами окаймленные ямки втягиваются внутрь клетки и отрываются от мембраны, образуя эндоцитозные везикулы. В результате слияния везикул с внутриклеточными гладкими везикулами образуются эндосомы. Впоследствии эндосомы, поглотившие ЛПНП, сливаются с лизосомами, где и происходит деградация ЛПНП: в клетке ЛПНП распадаются с освобождением холестерина (происходит высвобождение эфира холестерина с последующим расщеплением на жирные кислоты и свободный холестерин, которые и являются строительным материалом клеточной мембраны). Освободившиеся рецепторы вновь встраиваются в мембрану.
Рассмотренный процесс метаболизма ЛПНП называется рецепторно-опосредованным эндоцитозом. Чем примечателен этот процесс? Оказывается, при избытке внутриклеточного холестерина синтез рецепторов к ЛПНП подавляется, а при низком уровне внутриклеточного холестерина синтез рецепторов к ЛПНП, наоборот, возрастет. Регулятором при этом является сам холестерин, который по механизму отрицательной обратной связи снижает скорость его синтеза. Блокирование рецепторного захвата холестерина и его внутриклеточного синтеза при высоком содержании внутриклеточного холестерина и соответствующая активация рецепторного захвата холестерина при его недостатке в клетке составляют первый механизм метаболизма холестерина. Здесь важно подчеркнуть, что рецепторно-опосредуемый эндоцитоз обеспечивает не только внутриклеточный баланс холестерина, но и поддержание нормального уровня ЛПНП в крови, препятствуя тем самым развитию атеросклероза.
Мы сочли уместным представить читателю довольно сложную картину регулирования холестерина. Разумеется, что нет необходимости оставлять в своей памяти «окаймленные ямки» и другие тонкости рассмотренного процесса метаболизма ЛПНП, однако читателю важно здесь уяснить, что нарушение рецепторного механизма метаболизма холестерина является ключевым фактором в становлении атеросклеротического процесса. Отметим, что рассмотрение этого механизма выходит за рамки кажущейся «теории» и имеет практический смысл, в чем читатель сможет убедиться при дальнейшем чтении книги, в частности при рассмотрении лекарственных препаратов из серии статинов.
Когда рассмотренный механизм стал достоянием медицинской общественности? Оказывается, что совсем недавно, если учесть, что «атеросклероз» как самостоятельное заболевание существует почти два века назад.
Рассмотренный выше механизм метаболизма холестерина в составе ЛПНП посредством рецепторно-опосредуемого эндоцитоза стал известным благодаря блестящим работам американских исследователей: генетика Майкла Брауна и врача Джозефа Гольдштейна, которые за исследования в области обмена холестерина при наследственной (семейной) гиперхолестеринемии и открытие рецепторов ЛПНП в 1985 году получили Нобелевскую премию по физиологии и медицине.
Таким образом, природа предусмотрела совершенный механизм метаболизма холестерина. У «здоровых» (с позиции содержания холестерина) людей этот механизм с определенной степенью совершенства реализуется, у «больных» (подверженных гиперхолестеринемии) этот механизм нарушен.
Кто же является нарушителем этого процесса? Чем отличаются указанные здесь «здоровые» и «больные» люди? Внимательный читатель уже догадался: конечно же, генами, поскольку указанные выше исследователи получили высокую награду за исследования в области наследственной гиперхолестеринемии. И читатель прав. Однако прежде чем выяснить причастность генов к развитию атеросклероза, поговорим немного о самих генах.
Гены и наследственная гиперхолестеринемия
Часто в разговорах на тему здоровья можно услышать глубокомысленную фразу: «Гены решают все…». Однако далеко не все представляют, что стоит за этим выражением. Краткое рассмотрение вопроса о генах нам представляется целесообразным из тех соображений, что, во-первых, это интересно и познавательно, во-вторых, гены, оказывается, имеют непосредственное отношение к «поломке» рассмотренного выше процесса метаболизма ЛПНП, а, таким образом, и к развитию атеросклероза.
Стало известно (60-е годы XX века), что носителем генетической информации является ДНК (дезоксирибонуклеиновая кислота) — макромолекула, обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК находится в ядре клеток хромосом, а также в митохондриях. Здесь речь пойдет о ядерной ДНК. Что собой представляет эта молекула? Она состоит из двух длинных цепей химических звеньев, скрученных, как коса, в двойную спираль. При этом четыре вида звеньев в ДНК подчиняются строгому закону: звену одного какого-то типа в первой цепи соответствует звено определенного типа во второй цепи. Эти повторяющиеся звенья именуются нуклеотидами. В состав ДНК входят 4 типа нуклеотидов: аденин (А), тимидин (Т), гуанин (G) и цитозин (С). Во всех молекулах ДНК одиночной клетки содержатся более 3 млрд. пар нуклеотидов. Геном человека — это совокупность наследственного материала, заключенного в клетке. Состоит из 23 пар хромосом, находящихся в ядре, при этом на каждую пару хромосом приходится по одной молекуле ДНК. Найдено, что на долю генов приходится только около 3% общей длины ДНК человека. Внегенные участки ДНК ранее называли «мусорными». Однвко сегодня функциональная роль этой «мусорной» части ДНК, составляющей около 97% общей длины цепи ДНК, пересматривается.
Ген — это участок цепочки ДНК, который кодирует определенный белок. Гены не организованы в одну длинную последовательность, а состоят из участков, называемых экзонами. Они отличаются от других участков цепи тем важнейшим свойством, что именно на генах образуются «инструкции» для производства белков, которые управляют всей жизнью организма. Полагают, что ДНК человека содержит около 30 тысяч генов.
Если строение гена отличается от «стандарта», то можно говорить о его мутации. Эта мутация найдет свое отражение в структуре и функции белка, которым управляет данный ген. В случае, когда синтезированный под управлением дефектного гена измененный белок играет ключевую роль в том или ином обменном процессе, может развиться генетически детерминированная болезнь. Важнейшей характеристикой мутантного гена является его способность или неспособность к доминированию. Соответственно различают доминантные и рецессивные гены. Если ген доминантный, то контролируемый им признак (болезнь) обязательно проявится не только при гомозиготном, но и при гетерозиготном наследовании. Если ген рецессивный, то при гетерозиготном наследовании он, как правило, не проявляет себя.
Таким образом, весь набор генов распределен в 46 хромосомах, содержащихся в каждой соматической клетке. Расшифровка генома — это выяснение, в каком порядке расположены звенья полимерной цепи. Именно от этого порядка зависит вся наша биологическая индивидуальность вплоть до различных болезней, к которым мы предрасположены. Очевидно, что геномы различных людей отличаются друг от друга. Однако оказалось, что из миллиардов генетических букв, из которых состоит ДНК человека, 99,9% — одни и те же у всех людей. Получается, что всего от одной десятой доли процента генома зависит, кто мы есть — здоровые или больные, сильные или слабые, оптимисты или пессимисты и т. д. Как ДНК кодирует белки? Какую «грамматику» она использует? Как мы уже отмечали выше, «буквами» в ДНК-тексте служат нуклеотиды. Поскольку их всего 4 типа, то иногда геном человека именуют «энциклопедией, написанной четырьмя буквами». У одного человека кусочек цепочки ДНК представлен одним чередованием звеньев (нуклеотидов), у другого — другим чередованием. Суть в том, что последовательность звеньев в цепочке может быть любой, но эта последовательность строго связана с последовательностью звеньев в другой (парной) полимерной цепочке: напротив А должно быть Т, напротив Т должно быть А, напротив С должно быть G, а напротив G должно быть С. Одиночная замена одного какого-то нуклеотида в данной точке ДНК на другой нуклеотид на языке генетиков называют снипсом. Снипсы являются своего рода биологическими маркерами, помогающими найти гены, связанные с тем или иным заболеванием.
Отметим, что за открытие структуры ДНК американцы Дж. Уотсон, Ф. Крик и англичанин М. Уилкин получили в 1962 году Нобелевскую премию. В историческом масштабе открытие структуры ДНК сопоставимо с открытием структуры атома. Если последнее привело к появлению квантовой механики, то открытие структуры ДНК дало начало молекулярной биологии. ДНК назвали главной молекулой живой природы. Почему столь велико значение этого открытия? Потому что гены, составляющие основу человеческого генома, управляют нашей жизнью от момента зачатия до последнего вздоха, без них не функционирует ни один наш орган: не работает мозг, не бьется сердце, не течет кровь. Раскрытие структуры ДНК имеет огромнейшее значение, потому что человек получил научную основу для того, чтобы познать самого себя.
Очевидно, что важнейшим вопросом в области генетики после открытия структуры ДНК является изучение роли генов — какой ген чем управляет. В настоящее время определено около 1000 генов, связанных с различными болезнями человека. Найдены снипсы, связанные с некоторыми видами рака, различными аутоиммунными заболеваниями, диабетом и т. д. Например, часто встречающееся такое наследственное заболевание, как синдром Дауна, связывают с патологией в 21-й паре хромосом, при этом этот признак болезни ребенка в настоящее время регистрируется на стадии беременности матери. Одним словом, в этой области достигнуты существенные успехи. Что дальше? Можно ли «больной» ген заменить на «здоровый», подобно тому как заменяют деталь в автомобиле? Эту задачу должны решить специалисты нового направления — генной терапии. Полагают, что и эта задача, возможно, будет в будущем решена. Сегодня ДНК-анализ перешел в разряд исследований, доступных каждому, свидетельством чего являются частые «высокоморальные» телевизионные передачи, связанные с дележом имущества и необходимостью идентификации личности-наследника. Именно последовательности нуклеотидов ДНК конкретного человека составляют его ДНК-профиль, или «генетический паспорт», который можно использовать для идентификации личности.
В завершение этого раздела отметим, что каждый из нас, будучи здоровым, является гетерозиготным носителем определенных «плохих» генов. Среди родственников одной семьи имеется много одинаковых генов, то есть, они являются гетерозиготными носителями по одному и тому же патологическому гену. Поэтому при родственном браке может проявиться наследственность двух однотипных гетерозигот и рождение ребенка-гомозигота. Яркие примеры неблагоприятного влияния родственных браков на потомство являют собой королевские династии. Печальным последствием таких браков являлось появление на свет неполноценных людей. По этой же причине угасла династия египетских фараонов, в которой из поколения в поколение заключались браки между родными братьями и сестрами.
Разумеется, что мы рассмотрели самые приблизительные представления о работе генов и их мутациях, необходимые для обсуждения роли генов в развитии атеросклероза.
Вернемся теперь к обсуждению основного вопроса: каким образом может быть нарушен раскрытый упомянутыми выше нобелевскими лауреатами столь совершенный рецепторный механизм регулирования ЛПНП и содержания холестерина в клетке и крови?
Клеточный рецептор ЛПНП, как мы отметили выше, — это белок. Мы теперь знаем, что первичная структура всех белков записана в генах, при этом дважды: один ген находится в отцовской хромосоме, другой — в материнской. Исследования М. Брауна и Д. Гольдштейна показали, что наследственные нарушения метаболизма ЛПНП связаны главным образом с мутацией генов, кодирующих рецептор ЛПНП. К настоящему периоду выявлены 4 моногенные формы семейной гиперхолестеринемии (СГХС), в основе которой лежит нехватка рецепторов ЛПНП в печеночных и других соматических клетках или их изъян в работе. При нехватке или дефектной работе рецепторов ЛПНП плохо захватываются клетками-потребителями холестерина, накапливаются в циркулирующей крови, что является не только причиной СГХС, но и основой развития многоступенчатого атеросклеротического процесса, который мы и будем рассматривать в дальнейшем.
Причина этой формы наследственной СГХС — мутация в одном из моногенов 19-й хромосомы, контролирующем синтез рецепторов ЛПНП. Чаще всего в случае наследственной гиперхолестеринемии поврежден один из двух генов, кодирующих белок-рецептор. В этом случае, как мы отмечали выше, говорят о гетерозиготной форме наследственной болезни. Этот вид мутации распространен в странах Восточной Европы. У людей с таким мутантным геном половина рецепторов просто не работает. Таким людям рано грозит атеросклероз, поскольку концентрация холестерина в крови достигает очень высоких значений в возрасте 35—40 лет, что приводит к выраженному атеросклерозу и риску инфаркта миокарда. Исследования показали, что среди 60-летних пациентов с ишемической болезнью сердца у каждого 20-го болезнь вызвана в дефекте гена, кодирующего рецептор. Заметим здесь, что в настоящее время концентрация холестерина у таких больных может быть доведена до нормы приемом статинов, терапевтические свойства которых мы подробно обсудим ниже.
Полезно для читателя отметить, что характерным признаком гетерозиготной формы семейной гиперхолестеринемии является ксантоматоз — отложение холестерина в сухожилиях, приводящее к их резкому утолщению, а также инфильтрация холестерина вдоль края радужной оболочки — липоидная дуга роговицы.
В том случае, когда оба родителя имеют отмеченный выше дефект в 19-й хромосоме, то рождающийся у них наследник приобретает гомозиготный вариант наследственной гиперхолестеринемии, обусловленный наличием у него сразу двух мутантных гена. Такие люди живут недолго. Спасением их жизни может быть трансплантация печени. К счастью, гомозиготный вариант наследственной СГХС встречается значительно реже — 1 человек на 1 млн.
Второй тип мутации, приводящей к СГХС, — это дефект синтеза апопротеина В-100 — основной белковой частицы ЛПНП. Нарушение в структуре этого белка, который, как мы отметили ранее, является лигандом (связующим мостиком с рецептором ЛПНП в клетке), затрудняет захват ЛПНП, что также приводит к избыточному количеству холестерина в крови.
Таким образом, семейная гиперхолестеринемия обусловлена разнообразными видами генетических дефектов рецепторов ЛПНП, более подробное рассмотрение которых здесь представляется излишним. Отметим еще раз, что результатом этих мутаций является нарушение нормального лиганд-рецепторного взаимодействия как вследствие количественных (отсутствие или дефицит), так и качественных (нарушение функции) изменений молекул как рецептора, так и лиганда (апобелка).
Рассматривая генетические аспекты развития атеросклероза, кроме отмеченных мутаций рецептора ЛПНП и апоВ, интересно упомянуть роль гена, регулирующего фермент со сложным названием «пропротеин конвертаза субтилизинкексин тип 9» (PCSK9). Нужны ли такого рода подробности, спросит читатель, полагая приводимые данные излишней теорией. Однако суть в том, что все эти сведения имеют непосредственное практическое значение для людей с избыточным холестерином, поскольку такого рода сведения позволяют читателю посмотреть свою личную «холестериновую историю» с научных позиций и более грамотно подходить к проблеме достижения «правильного» уровня холестерина.
Мутации этого фермента встречаются довольно редко и в основном в популяции темнокожих в Африке. Однако история с этим типом мутации интересна тем, что нашла свое дальнейшее развитие и выразилась в разработке новых лекарственных препаратов для предотвращения атеросклероза. Более подробно о самом ферменте PCSK9, его влиянии на уровень ЛПНП и новейших лекарственных препаратах мы расскажем ниже. Чем семейная (наследственная) гиперхолестеринемия отличается от приобретенной? Приобретенная гиперхолестеринемия характеризуется отсутствием патологии функционирования рецепторной системы. В ее развитии ведущую роль играют так называемые факторы риска развития атеросклероза, которые мы подробно рассмотрим в дальнейшем.
Приведенные данные пока не позволяют говорить о механизме развития атеросклероза, поскольку последний характеризуется поражением сосудов, роль которых мы еще не затрагивали. Очевидно, чтобы говорить о возникновении атеросклеротических поражений сосудов, необходимо рассмотреть, каким образом повышенный уровень ЛПНП (в результате нарушения рецепторного механизма) делает их атерогенными частицами и каким образом эти частицы взаимодействуют с внутренней стенкой кровеносного сосуда, оказывая повреждающее действие. Для чего познакомимся со строением и функцией артерий, по которым течет кровь.
Эндотелий и эндотелиальная дисфункция
Стенка артерии состоит из трех слоев. Внутренний слой — интима — представляет собой монослой эндотелиальных клеток, которые создают поверхность, непосредственно контактирующую с клетками крови. Средний (мышечный) слой располагается непосредственно под эндотелием и состоит из гладкомышечных клеток. Далее следует адвентиция — наружная оболочка артерии, состоящая из большого количества коллагеновых и эластических волокон.
Эндотелий определяется как однослойный пакет специализированных клеток, выстилающих внутреннюю поверхность сосудов. Функции эндотелиальных клеток многогранны и сложны, а поэтому мы отметим лишь некоторые из них. Прежде всего, эндотелий сосудистой стенки играет важную роль в сохранении жидкого состояния крови и свободного ее тока по сосудам. Эта функция обеспечивается продукцией эндотелием ряда веществ, обладающих противосвертывающими и антиагрегатными свойствами. Эндотелий играет ключевую роль в регуляции сосудистого тонуса и кровотока, процессов коагуляции, тромбоза, иммунных и воспалительных реакций. Сосудодвигательная функция эндотелия реализуется за счет секреции эндотелием специфических веществ, которые можно разделить на вазоконстрикторы (оказывают сосудосуживающее действие) и вазодилататоры (оказывают сосудорасширяющее действие).
Одним из ключевых биологически активных соединений, вырабатываемых в клетках эндотелия, является оксид азота, который предотвращает патологическую перестройку сосудистой стенки и прогрессирование атеросклероза. Американский фармаколог Луис Игнарро в 1998 г. получил Нобелевскую премию «за открытие роли оксида азота как сигнальной молекулы в регуляции сердечно — сосудистой системы», что свидетельствует о важном значении этого вещества. Роль этого эндотелиального фактора мы будем отмечать при дальнейшем рассмотрении материала.
Основная барьерная роль эндотелия заключается в регуляции равновесного состояния вырабатываемых биологически активных веществ, вызывающих противоположные процессы.
Различного рода нарушения эндотелия вызывают его дисфункцию. Здесь мы считаем необходимым обратить внимание читателя на то крайне важное положение, что нарушение эндотелиальной функции сегодня считается одним из важнейших независимых факторов риска развития атеросклероза.
К числу таких нарушающих целостность и непроницаемость эндотелия факторов относится гиперхолестеринемия, которая образуется, как мы уже знаем, вследствие нарушения рецепторного механизма метаболизма ЛПНП. Далее мы покажем, что с эндотелиальной дисфункцией ассоциируются и другие факторы риска развития атеросклероза, включающие высокое артериальное давление, гипергомоцистеинемию, сахарный диабет, эндотоксинемию и т. д. Все перечисленные факторы формируют реальные условия для развития и прогрессирования эндотелиальной дисфункции и, таким образом, для развития атеросклероза. Все эти факторы будут подробно рассмотрены нами ниже.
На этом мы завершим краткую характеристику роли эндотелия в развитии атеросклероза. Читателю достаточно понять, что целостность эндотелия и сохранение его физиологической функции является основой здоровья сердечно-сосудистой системы. Эндотелий — первая линия сопротивления наступающему атеросклерозу. А теперь посмотрим, как эту линию обороны нарушает повышенный холестерин (ЛПНП).
Механизм образования
атеросклеротической бляшки
Итак, нарушение рецепторного механизма регулирования уровня ЛПНП приводит к повышенному содержанию в крови этих липопротеинов. Какова их дальнейшая судьба? Исследования процесса развития атеросклероза сегодня надежно указывают, что одним из этапов развития атеросклероза является модификация ЛПНП. В чем заключается эта модификация? Под модификацией понимается перекисное окисление ЛПНП, кардинально изменяющее их свойства. В чем суть перекисного окисления?
Сегодня достоверно установлено, что перекисное окисление ЛПНП происходит под действием так называемых свободных радикалов — высокоактивных молекул, имеющих в своей структуре неспаренные электроны на внешней орбитали. Для биологических систем наиболее важны кислородные свободные радикалы. Все известные кислородсодержащие свободные радикалы объединены термином «активные формы кислорода» (АФК), который мы будем использовать в дальнейшем. Из-за того, что атому кислорода в молекуле радикала не хватает электрона на оболочке, он становится очень активным и стремится прореагировать с другими молекулами, в том числе со структурными элементами клетки: липидами, белками, ДНК, — повреждая таким образом эти структурные части и клетку в целом. Такого рода повреждение в результате действия АФК называется оксидативным стрессом. Особенность и неприятность этого процесса заключается в том, что окисленные свободными радикалами молекулы становятся также свободными радикалами и взаимодействуют с другими молекулами, опять-таки нарушая их структуру. Отсюда и следует название этого процесса — свободнорадикальные реакции. Эти процессы создают мощную разрушительную силу для организма и являются основой возникновения большого количества заболеваний. Что касается атеросклероза, то участие свободных радикалов прослеживается от начальной стадии образования атеросклеротической бляшки до непосредственно «инфарктного» этапа, о чем мы будем говорить неоднократно в дальнейшем.
Наибольшее внимание в работах по атеросклерозу уделено перекисному окислению ЛПНП как основных участников атеросклеротического процесса и как частиц, наиболее подверженных окислению вследствие большого содержания в них полиненасыщенных жирных кислот и низкого содержания в них антиоксидантов.
Каким же образом проявляется модификация ЛПНП? Ранее при рассмотрении рецепторного механизма регулирования уровня ЛПНП мы отмечали, что нативные ЛПНП (не подвергнутые модификации) хорошо узнаются рецепторами ЛПНП различных клеток, взаимодействие которых осуществляет не только доставку холестерина различным клеткам-потребителям, но и его регулирование по принципу обратной связи. Модифицированные ЛПНП уже не распознаются рецепторами, а поэтому их метаболизм посредством рецептор-опосредованного эндоцитоза (сущность которого мы рассмотрели ранее) нарушается. В этом заключается важнейшее проявление модификации ЛПНП. Очевидно, что такие частицы нуждаются в немедленной элиминации (удалении) из кровотока. Какой же механизм метаболизма ЛПНП приходит в этом случае?
На смену рецепторному механизму приходит механизм метаболизма, связанный с участием клеток иммунной системы, клеток крови, эндотелиальных клеток — метаболизм посредством фагоцитоза. Итак, проследим, какие процессы развиваются после модификации ЛПНП.
Следующим этапом развития атеросклероза сосудов является инфильтрация интимы циркулирующими в крови лейкоцитами-моноцитами. Суть в том, что окисленные ЛПНП хемотаксически привлекают моноциты, и момент установления прочной связи моноцита с клетками эндотелия считается самым ранним этапом своеобразного атеросклеротического воспаления. Напомним здесь, что термин «хемотакис» широко употребляется при рассмотрении иммунологических реакций (chemo — «кровь», а taxis — «траектория движения»). В нашем случае хемотаксические сигналы посылают модифицированные ЛПНП, ставшие для иммунной системы чужеродными клетками, и сигнализируют моноцитам о необходимости предпринять соответствующие «мероприятия» для утилизации «испорченных» ЛПНП. Моноциты принимают эти сигналы и выполняют следующие «мероприятия»: первое — после недолгого пребывания в крови моноциты мигрируют в ткани, второе — в тканях моноциты преобразуются в макрофаги.
Таким образом, скопившиеся в интиме моноциты превращаются в макрофаги. Модифицированные ЛПНП вследствие «поломки» белка апоВ-100 не распознаются ЛПНП-рецепторами, но зато хорошо распознаются так называемыми скэвенджер-рецепторами (рецепторами-мусорщиками) макрофагов. С помощью этих рецепторов макрофаги поглощают модифицированные ЛПНП, однако их поступление в макрофаги не регулируется рассмотренным выше механизмом обратной связи, а поэтому содержание модифицированных ЛПНП в макрофагах растет прямо пропорционально концентрации ЛПНП в крови. Таким образом, макрофаги поглощают окисленные ЛПНП и складируют их как мусор. Перегруженные липидами макрофаги далее превращаются в пенистые клетки (на гистологической картинке такие образования выглядят как сыр с большими дырками, поэтому и называются пенистыми клетками). Пенистые клетки в последующем подвергаются апоптозу — запрограммированной клеточной смерти (сущность и роль апоптоза в жизни клеток мы рассмотрим в завершающей главе книги). При апоптозе происходит выделение холестерина, возникают его очаговые накопления в интиме артерии, что создает предпосылки для развития липидных пятен, а затем и липидных полосок — предвестников бляшки.
Таков начальный механизм формирования атеросклеротической бляшки. По мере прогрессирования рассмотренного процесса в участках отложения липидов разрастается молодая соединительная ткань, что ведет к образованию фиброзных бляшек, в центре которых формируется липидное ядро. По мере созревания соединительной ткани коллагеновые волокна утолщаются, формируя соединительный каркас бляшки, который отделяет липидное ядро от просвета сосуда («покрышка»). Формируется типичная фиброзная бляшка, выступающая в просвет сосуда и нарушающая в нем кровоток. На ранних стадиях формирования бляшки ее липидное ядро хорошо выражено, а покрышка сравнительно тонкая и поэтому может повреждаться под действием различных факторов. Такие мягкие с эластичной покрышкой бляшки называют нестабильными, или осложненными, бляшками. Они, как правило, мало суживают просвет сосуда, но ассоциируются с высоким риском возникновения повреждений и разрывов фиброзной бляшки и образованием тромба. Суть в том, что контакт тромбоцитов с липидным ядром бляшки при его оголении вызывает активацию тромбоцитов: они начинают приклеиваться к поврежденному участку, что приводит к внезапному тромбозу сосуда. Образование пристеночного тромба резко ограничивает кровоток в артерии. В большинстве случае именно в этот период возникают клинические проявления обострения заболевания (нестабильная стенокардия, инфаркт миокарда, внезапная смерть).
В других случаях фиброзная покрышка хорошо выражена, плотная и в меньшей степени подвержена повреждению. Такие бляшки называют стабильными. Они нередко значительно выступают в просвет артерии и вызывают гемодинамически значимое ее сужение — оказывают влияние на кровоснабжение сердца. Прогрессирующее развитие бляшки приводит к существенному сужению просвета коронарной артерии и развитию ишемической болезни сердца.
Итак, мы рассмотрели основные стадии формирования атеросклеротической бляшки. Разумеется, что здесь не приведена вся подробная картина взаимодействия различных веществ, участвующих в многоступенчатом процессе формирования бляшки в интиме артерии. Такого рода подробности для читателя, ставящего своей целью не допустить развития атеросклероза, излишни. Однако внимательный читатель должен заметить, что пусковым механизмом всего описанного выше процесса поражения артерии является модификация ЛПНП вследствие их окисления. Возникает вопрос, имеющий непосредственное практическое значение: перекисное окисление ЛПНП является нормальным биологическим процессом, то есть предусмотренным природой явлением, или же является случайным событием в результате действия каких-либо факторов?
В популярной медицинской литературе, как правило, говорится о пагубном действии свободных радикалов и призывают всех бороться с ними с помощью различного рода антиоксидантов. В действительности же вопрос значительно сложнее. Сегодня хорошо установлено, что образование свободных радикалов является одним из механизмов жизнедеятельности клеток и различных процессов. Такое утверждение основывается на том факте, что процессы свободнорадикального окисления протекают в нашем организме в нормальных условиях. Каким образом это можно проверить? Это можно определить путем измерения продуктов, образующихся в результате процесса окисления. Эксперимент свидетельствует, что в организме имеется нормальный физиологический (фоновый) уровень продуктов окисления, что свидетельствует о строгом контроле за процессом окисления со стороны всей иерархической системы регуляции этого процесса.
Заметим, что в рассматриваемом нами участии ЛПНП в развитии атеросклеротического процесса окисление ЛПНП является, на первый взгляд, «вредным» процессом, поскольку именно такая «модификация» создает предпосылки для развития атеросклеротического процесса. Не просматривается ли здесь «несовершенство» процессов в нашем организме? Нет. Рассмотренный метаболизм модифицированных ЛПНП является компонентом эволюционно выработанного механизма неспецифического врожденного иммунитета, направленного на защиту от чужеродных частиц. Обратной стороной защитной реакции является формирование атеросклеротической бляшки. Другими словами, природный механизм функционирования всей этой сложной системы выбрал вариант развития медленного хронического воспалительного процесса (атеросклероза), негативные результаты которого проявляются к преклонным годам жизни, по сравнению с возможностью быстрой смерти организма от вредного действия «чужеродных» частиц.
Физиологическая роль реакций перекисного окисления в человеческом организме (в норме) затрагивает сложные процессы, на которых мы не будем останавливаться. Что касается ЛПНП, как главного рассматриваемого здесь субстрата окисления, то отмечается, что концентрация в крови модифицированных ЛПНП у здоровых людей составляет не более 0,2% от общего количества, тогда как у лиц с проявлениями атеросклероза содержание окисленных ЛПНП увеличено в 10—100 раз.
Разумеется, что результаты повреждения клеток под воздействием АФК скрыты от нашего взгляда, однако в некоторых случаях их можно обнаружить и визуально. Известно, что с возрастом появляются пигментные пятна на коже, которые представляют липофусцин — внутримолекулярный продукт окисления клеточных липидов и остатков белков, которые остаются в лизосомах при нарушении аутофагии, суть которой мы рассмотрим в дальнейшем. Липофусцин, именуемый «пигментом старости», является по своей сути биомаркером старения. С возрастом он особенно аккумулируется в нейронах и кардиомиоцитах — клетках с повышенным метаболизмом. Отмечается, что в старости этот пигмент составляет до 3% массы сердечной мышцы, что свидетельствует об интенсивности окислительных реакций в миокарде.
Атеросклероз
как воспалительный процесс
Прежде чем перейти к рассмотрению воспалительной гипотезы развития атеросклероза, целесообразно остановиться на сути воспаления. Воспаление — это основная защитная реакция организма на повреждающее действие, тесно связанная с реакциями иммунитета, которые участвуют в развитии воспаления. Приведем элементарный пример воспаления, связанного с простой занозой, попавшей под кожу и загрязненной бактериями. После боли и покраснения образуется гнойный нарыв, который через некоторое время прорывается, и микробы вместе с накопившимся гноем выбрасываются из очага поражения. В таких случаях говорят, что «прошло все само по себе», понимая под этим, что никаких специальных мероприятий не предпринималось. В действительности за этим стоит работа клеток нашего иммунитета. Фагоцитирующие клетки (от phagos — «пожирающий» и kitos — «клетки») начинают активно передвигаться к месту воспаления. Хемотаксические сигналы, в направлении которых фагоциты начинают двигаться, посылают в окружающую среду сами чужеродные клетки. Достигая очага воспаления, клетки-фагоциты осуществляют фагоцитоз, являющийся филогенетически древней реакцией иммунной системы на внедрение чужеродных агентов. Фагоцитоз является стадийным процессом и заканчивается уничтожением «врага». Такова в упрощенном изложении суть цикла «воспаление — фагоцитоз». Процессы, ведущие к фагоцитозу и заканчивающиеся им, составляют суть воспаления. Явление фагоцитоза открыл русский ученый Мечников И. И., получивший за это открытие совместно с немцем П. Эрлихом Нобелевскую премию (1908 г.) «За труды по иммунитету». Подчеркивая важную роль фагоцитов при воспалении, Мечников говорил: «Нет воспаления без фагоцитоза».
Фагоцитоз представляет реакцию нашей иммунной системы на внедрение в организм вредных частиц. Эту исключительно важную функцию врожденного иммунитета обеспечивают специальные иммунные клетки — фагоциты, к которым относятся моноциты, макрофаги и нейтрофилы. Приведем краткую характеристику этих частиц.
Основой всей фагоцитарной системы являются упомянутые нами ранее моноциты. После недолгого пребывания в крови моноциты мигрируют в ткани, где они трансформируются в макрофаги. Макрофаги принимают самое активное участие в неспецифической защите организма от патогенных микроорганизмов. Нейтрофилы — это популяция лейкоцитов, иначе называемая микрофагами, или микрофагоцитами. Срок пребывания нейтрофилов в кровотоке составляет несколько часов, затем они попадают в ткани. Если продолжительность жизни макрофагов измеряется месяцами и даже годами, то нейтрофилы заканчивают свое существование в тканях в течение 3—5 суток. Интересно, что нейтрофилы, не нашедшие за время своей короткой жизни «врагов» и оставшиеся без «работы», фагоцитируются макрофагами. Настоящая «экспроприация экспроприаторов»!
Возвращаясь к рассмотренной выше схеме развития атеросклеротического процесса, мы видели, что именно моноциты являются теми частицами, которые проникают в интиму артерии. Хемотаксический сигнал им подают модифицированные ЛПНП, которые вследствие окисления стали чужеродными для организма частицами. Таким образом, моноциты являются ключевыми иммунорегуляторными клетками, вовлеченными в атеросклеротический процесс, поскольку инфильтрация моноцитов в интиму и последующее их превращение в макрофаги играют, как было отмечено выше, важнейшую роль в запуске и развитии атеросклероза.
Какова роль нейтрофилов в развитии атеросклеротического процесса? Этим фагоцитам также отведена своя «работа». Суть в том, что захват модифицированных ЛПНП рецепторами макрофагов возможен только после полной модификации этих липопротеидов, включающей в себя не только окисление липидов, но и модификацию белка апоВ-100. Как «работает» нейтрофил? Получив от частично окисленного ЛПНП (но уже ставшим чужеродным объектом) сигнал, нейтрофил активируется и резко изменяет свой метаболизм, вырабатывая целый букет высокореактивных соединений, которые окисляют и модифицируют в ЛПНП все: и фосфолипиды, и белки.
Быстрое изменение метаболизма фагоцитирующей клетки с выработкой токсических соединений, а также большого количества свободных радикалов в литературе именуют «респираторным взрывом». Такое название обусловлено тем, что активация ферментов, запускающих реакции образования токсических соединений, происходит за 2—3 секунды, а уровень продукции
АФК увеличивается более чем в 100 раз.
Можно восхищаться «устройством» и «работой» нашего организма, в том числе и иммунной системы. В самом деле, «природа» допустила ошибку, не у всех снабдив клетки организма качественными рецепторами ЛПНП, которые обеспечивают их «правильный» метаболизм. Увеличение количества и продолжительности циркуляции в крови ЛПНП приводит, как мы только что рассмотрели, к их модификации. Модифицированные ЛПНП становятся уже «чужеродными» частицами, они не могут участвовать в «правильном» метаболизме, их необходимо каким-то образом удалить из кровяного русла. Опять-таки «природа» нашла способ исправить допущенную ошибку, осуществив фагоцитарный механизм метаболизма модифицированных ЛПНП. Однако внимательный читатель подметит тот факт, что нейтрофил, осуществив свою модификацию ЛПНП, предоставил тем самым возможность макрофагам захватывать их и удалять из кровотока и одновременно формировать в артерии пенистые клетки — предвестники атеросклеротической бляшки. Получается, что такая «модификация» ЛПНП является одновременно одним из этапов развития атеросклеротического процесса! Более того, продукты «респираторного взрыва» могут поражать структуру других клеток и нарушать их функцию. Особенно токсичны эти продукты для эндотелиальных клеток. Таким образом, нейтрофил-фагоцит одновременно и «друг», и «враг». Почему так происходит? На этот вопрос мы уже дали ответ при рассмотрении двоякой роли макрофагов, удаляющих «врага» и одновременно способствующих развитию атеросклеротического процесса, однако еще раз повторимся: таким обоюдоострым механизмом неспецифического иммунитета природа снабдила наш организм с тем, чтобы выбрать из двух зол наименьшее — почти верная смерть от инфекций или медленное развитие атеросклероза.
Таким образом, уже на ранней стадии развития атеросклеротического процесса мы видим признаки выраженной иммунной активности, проявляющейся участием в процессе активированных моноцитов, макрофагов, нейтрофилов, что позволяет говорить о воспалительном характере атеросклеротического процесса.
Мы пока отметили участие некоторых иммунокомпетентных клеток, в какой-то степени знакомых читателю. В действительности в процесс атеросклероза дополнительно вовлечены различные семейства молекул воспаления, среди которых особое внимание специалистов привлекают так называемые цитокины. Какова их функция? Они являются медиаторами межклеточных взаимодействий при воспалении, иммунном ответе и других взаимодействиях. Одна из особенностей «производства» цитокинов — их секреция практически всеми клетками, участвующими в иммунологических реакциях. Цитокины, ответственные за индукцию иммунитета и одновременно являющиеся инициаторами воспалительного процесса, называются провоспалительными. Важная роль в иммунном ответе принадлежит особому классу цитокинов, получивших название интерлейкинов (ИЛ), которые обеспечивают взаимосвязь отдельных видов лейкоцитов. Сегодня установлено, что в процесс воспаления при атеросклерозе особо активно вовлечены провоспалительные и противовоспалительные ИЛ и цитокин под названием фактор некроза опухолей (ФНО-а). Участие всех типов цитокинов в развитии атеросклеротического процесса крайне многогранно, и такого рода сведения не являются крайне необходимыми читателю, поэтому мы ограничимся одним примером цитокиновой активности.
Мы выше отметили роль макрофагов в формировании атеросклеротической бляшки. Но этим роль макрофагов не ограничивается. Они способны секретировать цитокины и тем самым поддерживать воспалительный процесс, который, как мы выше показали, является частью атеросклеротического процесса.
У многих далеких от медицины людей бытует мнение, что бляшка — это мертвое, застывшее образование. Однако это совсем не так. Атеросклеротическая бляшка богата активированными иммунными клетками, которые могут нарушить целостность бляшки. Суть в том, что прочность покрышки бляшки определяется главным образом скоростью синтеза и разрушения коллагена. Синтез коллагена осуществляется гладкомышечными клетками, тогда как за ее разрушение отвечают макрофаги. При активации макрофагов наблюдается экспрессия провоспалительных цитокинов, активация оксидантного стресса и гибель гладкомышечных клеток. Все эти факторы могут вызвать истончение фиброзного покрытия и явиться причиной разрыва атеросклеротической бляшки, а таким образом и причиной развития острого коронарного синдрома (инфаркт миокарда, внезапная смерть). Таким образом, активация макрофагов и, соответственно, активация локального воспаления в атеросклеротической бляшке является ведущей причиной ее дестабилизации и разрушения.
Мы сочли целесообразным краткое упоминание о цитокинах, чтобы подчеркнуть сложность процессов, развивающихся при атеросклеротическом воспалении.
В настоящее время специалисты в области атеросклероза не сомневаются в связи между атеросклерозом и воспалением. Одно из определений атеросклероза как заболевания звучит следующим образом: «Атеросклероз — есть хронический воспалительный ответ артериальной стенки, инициированный некоторыми формами повреждения эндотелия». Представления об атеросклерозе как воспалительном процессе послужили альтернативой холестериновой гипотезе развития атеросклероза. Если атеросклероз имеет воспалительную природу, то остается ли в силе «холестериновая» природа этого заболевания, которой мы уделили основное внимание? Согласуется ли холестериновая теория атеросклероза с таким определением? Где в ней «воспаление» и «форма повреждения эндотелия»? Рассматривая этапы развития атеросклероза, мы отметили, что фагоцитоз модифицированных ЛПНП моноцитами и макрофагами по своей сути представляет воспалительный процесс, а их последующая инфильтрация моноцитов интимы артерий является основой атеросклеротического повреждения эндотелия. Поэтому большинство специалистов полагают, что проблема первичности нарушений обмена липопротеидов и порожденных ими иммуновоспалительных реакций — все равно как притча о курице и яйце. Это двуединая неделимая проблема, поскольку обе теории тесно связаны между собою и не исключают друг друга. Гиперхолестеринемия и воспаление не являются альтернативными факторами в развитии атеросклероза и представляют собой два взаимосвязанных механизма атеросклеротического процесса.
Холестериновая теория атеросклероза сегодня является одной из наиболее обсуждаемых и признанных специалистам. Ярким и весомым подтверждением холестериновой концепции развития атеросклероза являются впечатляющие случаи преодоления гомозиготной гиперхолестеринемии (суть ее мы отмечали выше), при которой тяжелейший атеросклероз развивается уже в юношеские годы. Убедительно показано, что только регулирование уровня холестерина в крови спасет таких пациентов от смерти.
На этом мы завершим рассмотрение сути холестеринового атеросклероза. Полагаем, что полученные читателем несколько упрощенные, но неискаженные знания о природе атеросклероза позволят ему более грамотно сформулировать свой вопрос вашему лечащему врачу. Поэтому и здоровому, и больному полезно знать о сути процессов, приводящих к атеросклерозу. Больному — чтобы грамотно лечиться, здоровому — чтобы не стать больным. Наконец, познакомившись с таким сложным и тонким механизмом развития атеросклеротического процесса, многим станет понятным, что предлагаемые разными компаниями средства для «чистки сосудов» в большинстве случаев являются бесполезными и «чистят» только ваши кошельки.
В завершение этой главы приведем историческую справку, связанную с изучением роли холестерина в развитии атеросклероза. В 1915 г. группа молодых врачей в Санкт-Петербурге под руководством выпускника Императорской военно-медицинской академии Н. Аничкова в своих экспериментах стала кормить кроликов несвойственной для них пищей — мясом, а также яичными желтками — и обнаружила на стенках коронарных артерий отложения, содержащие холестерин. Так зародилась инфильтрационная теория происхождения атеросклероза (инфильтрация интимы холестерином), связанная с именами русских исследователей Н. Н. Аничкова и С. С. Халатова.
Авторитетное американское издание писало: «Если бы истинное значение находок Аничкова было оценено своевременно, мы бы сэкономили более 30 лет в длительной борьбе за холестериновую теорию атеросклероза, а сам Аничков мог бы быть удостоен Нобелевской премии». Такое заявление было сделано в 2004 г., что свидетельствует о том, что заслуги русского ученого не забыты. Нобелевская премия нашла своих лауреатов в этой области в лице упоминавшихся американских иследователей, которые через 65 лет после опытов Аничкова сделали фундаментальные открытия в области холестеринового обмена, позволившие глубже понять природу атеросклероза.
Приведённый ознакомительный фрагмент книги Холестериновый атеросклероз, или Как предупредить инфаркт. Немного о гипотезах старения нашего организма предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других