Фантомы мозга

Сандра Блейксли, 1998

В. С. Рамачандран – всемирно известный невролог, психолог, доктор медицины, доктор философии, директор Исследовательского центра высшей нервной деятельности, профессор психологии и нейрофизиологии Калифорнийского университета в Сан-Диего. В своей книге «Фантомы мозга» автор рассказывает, как работа с пациентами, страдающими неврологическими нарушениями причудливого характера, позволила ему увидеть в новом свете архитектуру нашего мозга и ответить на многие вопросы: кто мы такие, как конструируем образ своего тела, почему смеемся и огорчаемся, как мы обманываем сами себя и мечтаем, что толкает нас философствовать, учиться, творить…

Оглавление

Из серии: Наука, идеи, ученые

* * *

Приведённый ознакомительный фрагмент книги Фантомы мозга предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 1

Фантом внутри

Все обсудив без страха, мы истину найдем, —

Небесный свод представим волшебным фонарем.

Источник света — солнце, наш мир — сквозной экран,

А мы — смешные тени и пляшем пред огнем.

Рубаи Омара Хайяма

Я знаю, мой дорогой Уотсон, что вы разделяете мою любовь ко всему необычному, ко всему, что нарушает однообразие нашей будничной жизни.

Шерлок Холмс

В моем кабинете сидит человек с огромным, усыпанным драгоценными камнями крестом на золотой цепи и рассуждает о своих беседах с Богом, «подлинном значении» космоса и скрытой истине, лежащей в основе всего сущего. Вселенная кишит откровениями, говорит он, если только вы дадите себе труд настроиться на нужную волну. Я смотрю в его медицинскую карту и про себя отмечаю, что он страдает височной эпилепсией с раннего подросткового возраста. Именно тогда с ним и «начал разговаривать Бог». Может, думаю я, его религиозные переживания как-то связаны с приступами?

Упав с мотоцикла, спортсмен-любитель потерял руку, но продолжает ощущать ее «фантом» — хуже того, он определенно чувствует, как этот фантом двигается! Он может помахать отсутствующей конечностью в воздухе, «прикоснуться» к предмету и даже «взять» чашку кофе. Когда я внезапно отодвигаю от него чашку, он вскрикивает от боли. «Ой! Я прямо чувствую, как ее вырывают из моих пальцев», — морщась, жалуется он.

У одной медсестры возникло большое слепое пятно в зрительном поле, что само по себе причиняет определенный дискомфорт. К сожалению, на этом ее беды не закончились: к своему ужасу, она часто видит в нем мультяшных персонажей. Когда я сажусь напротив, у меня на коленях появляются Баггс Банни, Элмер Фадд или Дорожный Бегун. Иногда она видит рисованные версии реальных людей, которых знает много лет.

Другая женщина — школьная учительница — перенесла инсульт, в результате которого вся левая половина ее тела оказалась парализованной. Впрочем, сама больная настаивает на том, что левая рука не парализована. Однажды, когда я спросил ее, чья это рука неподвижно лежит на одеяле рядом с ней, она заявила, что конечность принадлежит ее брату.

Библиотекарь из Филадельфии, пережившая другой тип инсульта, начала неудержимо смеяться. Это продолжалось целый день, пока она буквально не умерла от смеха.

И, наконец, есть Артур, который получил ужасную травму головы в автомобильной аварии и вскоре после этого стал утверждать, будто его отца и мать заменили двойники. Их лица казались ему странными, незнакомыми. В итоге молодой человек пришел к единственному логичному выводу, возможному в такой ситуации, — он предположил, что «новые» родители самозванцы. По большому счету, ничего другого ему и не оставалось.

Ни один из этих людей отнюдь не «сумасшедший»; визит к психиатру был бы пустой тратой времени. Скорее, у каждого из них повреждена определенная часть мозга, что привело к причудливым, но весьма характерным изменениям в поведении. Они слышат голоса, ощущают недостающие конечности, видят вещи, которые не видит никто, отрицают очевидное и высказывают дикие, невероятные суждения о других людях и мире, в котором мы все живем. И все же, по большей части, они находятся в здравом уме, рассудительны и не более безумны, чем вы или я.

Хотя эти и другие загадочные расстройства интриговали и озадачивали врачей на протяжении всей истории медицины, обычно их относят к необъяснимым курьезам — случаям, которые преимущественно запихивают в самый дальний ящик с надписью: «Убери и забудь». Большинство неврологов не особенно заинтересованы в объяснении такого странного поведения. Их цель — облегчить симптомы и улучшить самочувствие; при этом, разумеется, вовсе не обязательно копать глубже или выяснять, как работает мозг. Психиатры, напротив, часто изобретают мудреные теории для любопытных синдромов, как будто причудливые симптомы требуют столь же причудливого объяснения. Ответственность за непонятные поступки списывают на условия воспитания (плохие мысли с детства) или на мать (плохие родители). В книге «Фантомы мозга» мы будем придерживаться противоположной точки зрения. Пациенты, чьи истории болезни мы разберем подробно, суть наши проводники во внутреннее устройство и механизмы человеческого мозга — вашего и моего. Описанные здесь синдромы отнюдь не досадные курьезы; напротив, они иллюстрируют фундаментальные принципы работы нормальной психики и мозга, проливая свет на природу схемы тела, речь, смех, мечты, депрессию и другие отличительные признаки человеческой природы. Вы когда-нибудь задумывались, почему одни шутки смешные, а другие нет, почему смех звучит именно так, а не как-нибудь иначе, отчего человек склонен верить либо не верить в Бога, или с какой стати сосание пальцев ног вызывает эротические ощущения? Удивительно, но теперь нам под силу дать научные ответы хотя бы на некоторые из этих вопросов. Более того, изучая неврологических больных, мы можем обратиться к высоким «философским» проблемам касательно самой природы «Я»: например, какой механизм позволяет личности оставаться неизменной в пространстве и времени или что обеспечивает монолитное единство субъективных переживаний? Что значит выбор или волевой акт? А главное, как активность крошечных пучков протоплазмы в мозге рождает сознательный опыт?

Философы обожают разглагольствовать на такие темы, но только недавно стало ясно, что к подобным проблемам можно подойти с эмпирической точки зрения. Обследуя больных в клинике и лаборатории, мы можем провести эксперименты, которые помогут выявить глубинную архитектуру нашего мозга. Мы можем начать с того самого места, где остановился Фрейд, и провозгласить новую эпоху — эпоху экспериментальной эпистемологии (изучение того, как мозг представляет знания и убеждения) и когнитивной нейропсихиатрии (интерфейс между психическими и физическими нарушениями в мозге). Сегодня мы можем экспериментально исследовать убеждения, сознание, связь между разумом и телом, а также все другие отличительные черты человеческого поведения.

На мой взгляд, работа ученого-медика не так уж сильно отличается от работы сыщика. В этой книге я прежде всего стремился поделиться ощущением тайны, лежащим в основе всех научных изысканий и особенно характерным для наших неутомимых попыток познать собственный разум. Каждая глава начинается либо историей больного, который страдает якобы необъяснимыми симптомами, либо общим вопросом о человеческой природе, например, почему мы смеемся или почему мы так склонны к самообману. Затем, шаг за шагом, мы пройдем через ту же цепочку рассуждений, которой следовал я, когда пытался разобраться в этих загадочных нарушениях. В некоторых случаях — как в случае с фантомными конечностями, например, — я могу утверждать, что раскрыл тайну. В других — как в главе о Боге — окончательный ответ по-прежнему остается за пределами нашего разумения, хотя мы и подошли к нему максимально близко. Впрочем, независимо от того, разгадана загадка или нет, я надеюсь передать читателю тот дух интеллектуального приключения, который и делает неврологию самой захватывающей дисциплиной из всех. Как говорил Шерлок Холмс доктору Уотсону: «Зверь поднят!»

Возьмем хотя бы Артура, который считал своих родителей самозванцами. Большинство врачей наверняка сочли бы его просто сумасшедшим; во всяком случае, таково наиболее распространенное объяснение данного расстройства, предлагаемое во многих учебниках. Однако, показывая ему фотографии разных людей и измеряя активность потовых желез (с помощью устройства, похожего на пресловутый детектор лжи), я смог точно установить, что́ именно сломалось в его мозге (см. главу 9). Аналогичным образом построена вся книга: мы начинаем с набора симптомов, которые кажутся странными и непонятными, а заканчиваем — по крайней мере, в некоторых случаях — интеллектуально удовлетворительным объяснением сквозь призму нейронных сетей. При этом нам часто удается не только узнать что-то новое о работе мозга, но и распахнуть двери для совершенно нового направления исследований.

* * *

Прежде чем мы начнем, вы, однако, должны понимать, в чем суть моего личного подхода к науке и почему вообще меня привлекают всякие неординарные случаи. Когда я читаю лекции для непрофессиональной аудитории (а я читаю их по всей стране), мне снова и снова задают один и тот же вопрос: «Когда вы, неврологи, наконец придумаете единую теорию о том, как работает ум? В физике, например, существует общая теория относительности Эйнштейна и закон всемирного тяготения Ньютона. Почему такой универсальной теории не может быть и для мозга?»

Проблема заключается в том, что мы еще не готовы формулировать общие теории разума и мозга. Всякая наука должна пройти через две стадии: начальную «экспериментальную» стадию, движимую наблюдаемыми явлениями, когда ученые открывают базовые законы, и более сложную стадию, движимую теорией. Возьмем эволюцию знаний об электричестве и магнетизме. Хотя люди имели смутные представления о магнетитах и магнитах на протяжении веков и даже придумали компас, первым ученым, который предпринял систематические исследования магнитов, стал викторианский физик Майкл Фарадей. Он провел два очень простых эксперимента и получил невероятные результаты. В рамках одного эксперимента, который может повторить любой школьник, Фарадей просто насыпал железные опилки на лист картона, а снизу подносил магнит. В результате он обнаружил, что опилки самопроизвольно выстраивались вдоль магнитных силовых линий. Во втором эксперименте ученый перемещал магнит в центре катушки проволоки, и — о чудо! — в проволоке появлялся электрический ток. Эти неофициальные опыты — а эта книга полна примеров такого рода — оказали глубочайшее влияние на научную мысль того времени: благодаря им Фарадей не только впервые продемонстрировал существование невидимых полей, но и доказал связь магнетизма и электричества[1]. Хотя собственные интерпретации Фарадея носили качественный характер, его эксперименты подготовили почву для знаменитых уравнений электромагнитных волн Джеймса Клерка Максвелла, появившихся несколько десятилетий спустя — математических формализмов, которые составляют основу всей современной физики.

По моему глубочайшему убеждению, нынешняя нейронаука находится в стадии Фарадея, а не в стадии Максвелла, и забегать вперед едва ли разумно. Конечно, я бы хотел ошибаться, да и попытки сформулировать формальные теории о мозге, даже если при этом многие потерпят неудачу (к счастью, недостатка в таких энтузиастах пока не наблюдается), едва ли могут принести вред. Тем не менее лично я считаю, что оптимальная исследовательская стратегия может быть охарактеризована как «подновление». Всякий раз, когда я произношу это слово, люди в шоке смотрят на меня, как будто я сказал несусветную глупость: можно подумать, заниматься сложной наукой без всеобъемлющей теории, задающей идеям и догадкам правильное направление, заведомо невозможно. Но именно это я и имею в виду (хотя догадки отнюдь не случайны; их всегда подсказывает интуиция).

Я интересовался наукой с самого детства. Когда мне было восемь или девять лет, я начал собирать окаменелости и ракушки и всерьез увлекся таксономией и эволюцией. Чуть позже родители разрешили мне оборудовать небольшую химическую лабораторию дома, под лестницей; я подолгу наблюдал за тем, как железные опилки «шипят» в соляной кислоте и периодически поджигал водород, с удовольствием слушая, как он «хлопает». (Железо вытесняет водород из соляной кислоты с образованием хлорида железа и водорода). Мысль, что простой эксперимент может так много рассказать об устройстве мира и что все во Вселенной основано на взаимодействии, приводила меня в восторг. Помню, как-то раз, когда учитель рассказал мне об экспериментах Фарадея, я был ошеломлен: оказывается, человек может узнать так много, сделав так мало! Эти переживания вселили в меня, с одной стороны, пожизненное отвращение к мудреному оборудованию, а с другой — уверенность в том, что научную революцию можно совершить и без сложных приспособлений; все, что нужно, — пара-тройка хороших гипотез[2].

Другая моя странность заключается в том, что меня всегда привлекали скорее исключения, нежели правила. Так было в каждой науке, которую мне доводилось изучать. В старших классах меня мучил вопрос, почему йод — единственный элемент, который при нагревании превращается из твердого вещества сразу в пар, минуя плавление и жидкую фазу. Почему кольца есть у только Сатурна, но не у других планет? Почему вода, превращаясь в лед, расширяется, тогда как все прочие жидкости при затвердении сжимаются? Почему некоторые животные бесполые? Почему головастики регенерируют утраченные конечности, а взрослой лягушке это недоступно? Это потому, что головастик моложе, или потому, что он — головастик? Что произойдет, если задержать метаморфозу, заблокировав действие гормонов щитовидной железы (для этого в аквариум можно добавить несколько капель тиоурацила), и вырастить очень старого головастика? Он сможет восстановить недостающую конечность? (Будучи школьником, я предпринял несколько слабых попыток разобраться в этом вопросе, но, насколько мне известно, ответа мы не знаем и по сей день.)[3]

Конечно, изучать всякие странности отнюдь не единственный — и, тем более, не самый лучший (хотя и весьма увлекательный) — способ заниматься наукой. Скорее, это просто чудачество, которое свойственно мне с детства и которое, к счастью, я сумел превратить в преимущество. Наука — особенно клиническая неврология — изобилует примерами, которые «истеблишмент» упрямо игнорирует: они, видите ли, не согласуются с общепринятым мнением. Я же, к своему великому удовольствию, обнаружил, что многие из них — неограненные алмазы.

Тем, кто с подозрением относится к теории тесной связи разума и тела, например, стоит присмотреться к расстройству множественной личности. Некоторые клиницисты утверждают, что их пациенты могут фактически «менять» структуру своих глаз (близорукий человек становится дальнозорким, а синеглазый[4] — кареглазым) и формулу крови (высокий или низкий уровень глюкозы) в зависимости от личности, активной в данный конкретный момент. Кроме того, в литературе описаны случаи, когда после психологического шока люди седели буквально за одну ночь, а у благочестивых монахинь, переживших экстатическое единство с Иисусом, появлялись на ладонях стигматы. Как ни странно, несмотря на три десятилетия исследований, мы даже не уверены, что именно представляют из себя эти феномены: реальность или фальшивку. Ясно одно: происходит нечто интересное. Так почему бы не изучить такие случаи более подробно? Они сродни заявлениям о похищении инопланетянами и способности гнуть ложки, или же это подлинные аномалии, такие как рентгеновское излучение или трансформация бактерий[5], которые однажды могут привести к смене парадигмы и научной революции?

Медицина полна двусмысленностей; это-то меня всегда в ней и привлекало — стиль Шерлока Холмса импонировал мне с юных лет. Диагностика проблемы пациента — и наука и искусство в равной степени, а значит, требует не только развитых способностей к наблюдению и рассуждению, но и участия всех органов чувств. Я вспоминаю одного профессора, доктора К. В. Тирувенгадама, который учил нас определять болезнь по запаху. Так, безошибочный запах диабетического кетоза похож на сладковатый запах лака для ногтей; брюшной тиф пахнет как свежий хлеб; для скрофулеза характерен застоявшийся пивной дух; запах краснухи напоминает куриные перья; абсцесс легкого источает зловоние; а печеночной недостаточности свойственен запах аммиака. (Современный педиатр смело может добавить к этому перечню аромат виноградного сока, который возникает при инфицировании Pseudomonas у детей, и запах потных ног изовалериановой ацидемии.) Тщательно осмотрите пальцы, говорил нам доктор Тирувенгадам, ибо небольшое изменение угла между ногтевым ложем и подушечкой может указывать на развитие рака легких задолго до появления более зловещих клинических симптомов. Примечательно, что данный признак — утолщение концевых фаланг пальцев — мгновенно исчезает на операционном столе, стоит только хирургу удалить опухоль, но даже сегодня мы понятия не имеем, почему это происходит. Другой мой учитель, профессор неврологии, настаивал на том, чтобы мы диагностировали болезнь Паркинсона с закрытыми глазами — слушая шаги больных (пациенты с этим расстройством характерно шаркают). В наш век высокотехнологичной медицины этот «детективный» аспект клинической практики — умирающее искусство, но оно успело посеять семя в моем сознании. Внимательно наблюдая за поведением пациента, слушая его шаги, прикасаясь к нему и даже нюхая его, врач может прийти к разумному диагнозу и использовать лабораторные тесты, дабы подтвердить то, что и так уже известно.

Наконец, при обследовании и лечении больного долг всякого врача — задать себе вопрос: «Каково быть на месте этого пациента? Что, если бы я был им?» Лично я никогда не переставал восхищаться мужеством и стойкостью многих моих пациентов, не говоря уж о том, что иногда трагедия, как ни парадоксально, не только обогащает их жизнь, но и придает ей новый смысл. По этой причине клинические истории, которые изложены далее, суть истории о триумфе человеческого духа над бедами и невзгодами. Хотя многие из них окрашены печалью, все они проникнуты неиссякаемым оптимизмом. Например, один невролог из Нью-Йорка, которого я наблюдал, в возрасте шестидесяти лет вдруг начал страдать эпилептическими припадками, возникающими в правой височной доле. Разумеется, приступы вызывали беспокойство, но, к его изумлению и восторгу, он — впервые за всю свою жизнь — пристрастился к поэзии и сам начал думать в стихах, выдавая бесконечный поток рифм. Поэзия, признался он, позволила ему будто заново родиться, начать жизнь с чистого листа. Следует ли из этого примера, что все мы — тайные поэты в душе, как утверждают многие гуру и мистики Нового века? Обладает ли каждый из нас нереализованным потенциалом сочинять прекрасные стихотворения и поэмы, запрятанным в дальних уголках нашего правого полушария? Если да, можно ли каким-то образом высвободить такую латентную способность, только без эпилептических припадков?

* * *

Прежде чем мы познакомимся с моими пациентами и попытаемся разгадать кое-какие тайны нервной системы, я хотел бы пригласить вас на небольшую экскурсию по человеческому мозгу. Эти анатомические подробности (обещаю, я постараюсь объяснить их как можно проще) помогут вам лучше понять, почему неврологические пациенты ведут себя именно так, а не иначе.

Говорят, человеческий мозг — самая сложно организованная форма материи во Вселенной. Сегодня это почти клише, однако в нем есть определенная доля истины. Если вы отделите кусочек мозга, скажем, от извилистого наружного слоя — новой коры, или неокортекса, — и взглянете на него под микроскопом, вы увидите, что он состоит из нейронов (нервных клеток) — основных функциональных единиц нервной системы. При рождении типичный мозг, вероятно, содержит более ста миллиардов нейронов, однако с возрастом их число постепенно уменьшается.

Каждый нейрон состоит из тела (сомы) и десятков тысяч крошечных отростков, дендритов, которые получают информацию от других нейронов. Кроме того, у каждого нейрона имеется аксон — длинный отросток, который передает информацию от нервной клетки органам и другим нервным клеткам. Концевые участки аксона называются терминалями и служат для связи с другими нейронами.

Рис. 1.1

Если вы посмотрите на рисунок 1.1, вы заметите, что изображенный на нем нейрон связан с другими нейронами. Место контакта между двумя нейронами называется синапсом. Каждый нейрон образует от тысячи до десяти тысяч синапсов. Синапсы могут быть активными или неактивными, возбуждающими или тормозящими. Кусочек вашего мозга размером с песчинку содержит сто тысяч нейронов, два миллиона аксонов и один миллиард синапсов; и все они «разговаривают» друг с другом. На основании этих цифр было подсчитано, что количество возможных состояний мозга — теоретически возможных комбинаций активности — превышает количество элементарных частиц во Вселенной. Но если все так сложно, как нам разобраться в функциях мозга? Поскольку очевидно, что понимание функций нервной системы невозможно без понимания ее структуры[6], я начну с краткого обзора анатомии головного мозга.

Головной мозг начинается с продолговатого мозга — образования, которое соединяет спинной мозг с головным мозгом и содержит кластеры клеток (так называемые ядра), контролирующие жизненно важные функции, например кровяное давление, сердечный ритм и дыхание. Продолговатый мозг соединяется с варолиевым мостом, волокна которого идут в мозжечок — структуру размером с кулак в задней части мозга, помогающую нам выполнять скоординированные движения. Чуть выше располагаются два огромных полушария — похожие на орех половины мозга. Каждая половина делится на четыре доли — лобную, височную, теменную и затылочную, о которых мы подробнее поговорим в следующих главах (рис. 1.2).

Рис. 1.2

Макроскопическая анатомия человеческого мозга.

(а) Левая часть левого полушария. Обратите внимание на четыре доли: лобную, теменную, височную и затылочную. Лобная часть отделена от теменной центральной (роландовой) бороздой, а височная от теменной — латеральной (сильвиевой) бороздой.

(б) Внутренняя поверхность левого полушария. Мозолистое тело выделено черным цветом, таламус — белым. Мозолистое тело соединяет два полушария.

(в) Большие полушария, вид сверху.[7]

Каждое полушарие контролирует мышцы (например, в руке или ноге) на противоположной стороне тела. Правое полушарие заставляет вашу левую руку махать на прощание, а левое — вашу правую ногу бить по мячу. Две половины мозга связаны пучком нервных волокон под названием мозолистое тело. Если этот пучок перерезать, связь между двумя сторонами будет потеряна; результат — синдром, позволяющий получить кое-какое представление о роли, которую каждая сторона играет в познании. Внешняя часть каждого полушария представлена корой — шестью слоями клеток, образующими извилины и борозды и напоминающими кочан цветной капусты.

В самой середине мозга находятся два таламуса. Считается, что таламус эволюционно более примитивен, чем кора больших полушарий, и выполняет функции «ретранслятора»: вся сенсорная информация, за исключением запаха, проходит через него по пути к внешней мантии. Между таламусом и корой расположены базальные ядра или ганглии (структуры с весьма забавными названиями — например, скорлупа и хвостатое ядро). Наконец, ниже таламуса находится гипоталамус, который, по-видимому, отвечает за регулирование метаболических функций, выработку гормонов и различные базовые импульсы, такие как агрессия, страх и сексуальность.

Хотя эти анатомические факты известны давно, мы до сих пор не имеем четкого представления о том, как именно работает мозг[8]. Многие более старые теории можно отнести к одному из двух воюющих лагерей — модульной теории или холизму. Последние триста лет маятник в основном качался между двумя этими крайностями. Один конец спектра оккупировали сторонники модульного подхода: они полагают, что различные части мозга высокоспециализированы. Так, существует отдельный модуль для языка и речи, отдельный модуль для памяти, отдельный модуль для математических способностей, отдельный модуль для распознавания лиц и, возможно, даже отдельный модуль для выявления лжи. Более того, эти модули, или области, характеризуются существенной автономией. Каждый из них выполняет свою собственную работу, последовательность вычислений или что-то еще, а затем, подобно ведерной бригаде, передает данные в следующий модуль, почти не «разговаривая» с другими участками.

На другом конце спектра мы имеем холизм — теоретический подход, который в значительной степени пересекается с тем, что в наши дни принято называть «коннекционизмом». Представители данной научной школы утверждают, что мозг функционирует как единое целое и что все его части одинаково хороши. В пользу принципа целостности говорит тот факт, что многие участки мозга, особенно коры, могут выполнять самые разные задачи. Все связано со всем остальным, считают холисты, а потому поиск отдельных модулей — пустая трата времени.

Мой собственный опыт наблюдения за больными подсказывает, что эти две точки зрения отнюдь не исключают друг друга. Судя по всему, мозг — это динамическая структура, которая использует оба «режима». Величие человеческого потенциала проявляется только тогда, когда мы принимаем во внимание все возможности, не примыкая к поляризованным лагерям и не спрашивая, локализована данная конкретная функция или не локализована[9]. Как мы увидим далее, гораздо целесообразнее решать каждую проблему по мере ее возникновения, а не зацикливаться на определенной, заранее сформулированной четкой позиции.

На самом деле оба подхода в их крайних формах довольно абсурдны. В качестве аналогии предположим, что вы смотрите сериал «Спасатели Малибу». Где он локализован? В люминофоре на экране телевизора или в танцующих электронах внутри кинескопа? Или в электромагнитных волнах, передаваемых по воздуху? А может, на целлулоидной ленте или на видеопленке в студии, из которой транслируется шоу, или в камере, которая смотрит на актеров?

Большинство людей сразу понимают — вопрос бессмысленный. Тогда, возможно, у вас возникнет соблазн заключить, что сериал вообще не локализован (то есть модуль «Спасатели Малибу» не существует) в некоем конкретном месте, а пронизывает всю Вселенную, но это тоже абсурдно. Мы знаем, что он не локализован на Луне, или в моей кошке, или в стуле, на котором я сижу (хотя некоторые электромагнитные волны могут проникать в эти места). Очевидно, что люминофор, кинескоп, электромагнитные волны и видеопленка играют гораздо большую роль в этом действе, которое мы называем «Спасатели Малибу», чем Луна, стул или чужой кот.

Как только вы понимаете, что такое телевизионная программа на самом деле, вопрос «локализована или не локализована?» отступает на задний план, и вас начинает мучить другая проблема: «Как это работает?» Разумеется, изучение электронно-лучевой трубки и электронной пушки в конечном итоге даст вам кое-какие подсказки относительно того, как работает телевизор и почему время от времени на экране появляются спасатели из Малибу. Со стулом, на котором вы сидите, такой номер не пройдет: сколько бы вы на него ни смотрели, принципы телевизионной трансляции останутся тайной за семью печатями. Выходит, локализация не такая уж плохая площадка для старта — если, конечно, мы не ждем, что она содержит все ответы.

То же справедливо и в отношении многих обсуждаемых в последнее время вопросов о функционировании мозга. Речь локализована? А цветное зрение? А смех? Стоит нам лучше понять эти функции, как вопрос «где?» становится менее важным, чем вопрос «как?». На сегодняшний день собрано множество эмпирических данных, которые подтверждают существование специализированных участков или модулей мозга, опосредующих различные умственные способности. Тем не менее, чтобы разгадать главный секрет мозга, нужно не только выявить структуры и функции каждого модуля, но и установить, как они взаимодействуют друг с другом, генерируя весь спектр способностей, которые мы называем человеческой природой.

Вот тут-то в игру и вступают пациенты с необычными неврологическими нарушениями. Подобно аномальному поведению собаки, которая не лаяла во время убийства и тем самым навела Шерлока Холмса на след истинного преступника, любопытное поведение таких больных может подсказать нам, как различные части мозга создают внутреннюю репрезентацию внешнего мира и генерируют иллюзию «Я», сохраняющуюся в пространстве и времени.

* * *

Дабы в полной мере прочувствовать суть такого подхода к науке, рассмотрим несколько колоритных случаев — и соответствующие выводы, — которые описаны в старой неврологической литературе.

Более пятидесяти лет назад в клинику всемирно известного невролога Курта Гольдштейна вошла женщина среднего возраста. Она казалась совершенно нормальной и не испытывала проблем с речью. На самом деле с ней все было в порядке, за исключением одной-единственной странной жалобы — время от времени ее левая рука хватала ее за горло и пыталась задушить. В таких случаях женщина брала левую руку правой и, опустив ее, прижимала к боку — нечто подобное проделывал актер Питер Селлерс в образе доктора Стрейнджлава. Иногда ей даже приходилось садиться на мятежную конечность, так настойчиво та пыталась лишить ее жизни.[10]

Неудивительно, что лечащий врач женщины решил, что она психически нездорова, и направил ее сразу к нескольким психиатрам. Те ничем не смогли ей помочь и посоветовали обратиться к доктору Гольдштейну — великолепному диагносту, который брался за самые сложные случаи. Осмотрев больную, Гольдштейн констатировал: его новая пациентка не страдает ни психозом, ни истерией, ни каким-либо иным психическим расстройством. Отсутствовали и признаки выраженных неврологических дефицитов, таких как паралич или гиперрефлексия. Впрочем, скоро он нашел объяснение ее странному поведению. Как у вас и у меня, у этой женщины было два больших полушария, каждое из которых специализировалось на разных умственных способностях и контролировало движения на противоположной стороне тела. Как известно, полушария соединены сплетением нервных волокон под названием мозолистое тело, которое позволяет двум сторонам «переговариваться» и действовать «в согласии друг с другом». Однако в отличие от большинства из нас, правое полушарие этой женщины (которое управляло ее левой рукой) явно питало латентные склонности к суициду — другими словами, оно испытывало непреодолимое желание себя убить. Вероятно, раньше эти побуждения сдерживались «тормозами» — ингибирующими сигналами, поступающими через мозолистое тело из более рационального левого полушария. Если в результате инсульта, предположил Гольдштейн, мозолистое тело оказалось повреждено, эти «тормоза» исчезли. В итоге правая сторона мозга и кровожадная левая рука обрели свободу и периодически пытались задушить свою хозяйку.

Это объяснение не так надуманно, как кажется: некоторое время назад ученые установили, что правое полушарие более склонно к эмоциональной неустойчивости, чем левое. Больные, перенесшие инсульт на левой стороне мозга, часто тревожны, подвержены депрессии и в целом пессимистически смотрят на перспективы реабилитации. Причина, по-видимому, заключается в том, что при поражении левого мозга правый берет управление на себя и начинает паниковать по любому поводу. Люди с поражениями правого полушария, напротив, блаженно равнодушны к своему состоянию и прочим невзгодам. Левое полушарие просто не умеет сильно расстраиваться. (Подробнее об этом см. в главе 7.)

Когда Гольдштейн озвучил свой диагноз, последний, должно быть, казался научной фантастикой. Но вскоре женщина внезапно умерла — возможно, от второго инсульта (во всяком случае, точно не от удушения). Вскрытие подтвердило подозрения знаменитого невролога: некоторое время назад больная перенесла обширный инсульт в мозолистом теле, в результате которого левая сторона ее мозга утратила обычный контроль над правой стороной. Таким образом, Гольдштейн вскрыл двойственную природу функции мозга, показав, что два полушария в самом деле специализированы и предназначены для выполнения разных задач.

Следующим рассмотрим простой акт улыбки — нечто, что все мы делаем в социальных ситуациях. Вы видите друга и улыбаетесь. Что же происходит, когда друг достает фотоаппарат и просит вас улыбнуться по команде? Вместо естественного выражения радости у вас получается отвратительная гримаса. Как ни парадоксально, вы запросто улыбаетесь десятки раз в день, но стоит кому-то попросить вас улыбнуться, как действие, которое раньше совершалось без всяких усилий, становится чрезвычайно трудным. Думаете, из-за смущения? Ничего подобного: если вы подойдете к зеркалу и попробуете улыбнуться, уверяю вас, получится такая же гримаса.

Причина, по которой эти два вида улыбок различаются, состоит в том, что за них отвечают разные участки мозга, но только один из них содержит специальную «нейронную цепь улыбки». Спонтанную улыбку порождают базальные ганглии — скопления клеток между корой головного мозга (где происходит мышление и планирование) и эволюционно более старым таламусом. Когда вы видите дружелюбное лицо, зрительная информация в конечном итоге достигает эмоционального центра — лимбической системы, а затем передается базальным ганглиям, которые дирижируют последовательными сокращениями лицевых мышц, необходимыми для естественной улыбки. Когда эта нейронная цепь активна, ваша улыбка выглядит искренней. Весь каскад событий происходит в долю секунды без участия «мыслящих» участков коры.

Что происходит, когда кто-то просит вас улыбнуться на камеру? Устная инструкция фотографа поступает в высшие центры мозга, включая слуховую кору и речевые центры. Оттуда она передается в моторную кору, которая расположена в передней части мозга и отвечает за выполнение сложных произвольных движений, таких как игра на фортепиано или расчесывание волос. Несмотря на кажущуюся простоту, улыбка невозможна без тщательной «оркестровки» сокращений десятков крошечных мышц в нужной последовательности. Для моторной коры (которая не предназначена для генерирования естественных улыбок) это так же сложно, как сыграть Рахманинова без подготовки, и она терпит фиаско. Ваша улыбка получается вынужденной, напряженной, неестественной.

Лучшее доказательство существования двух разных «нейронных цепей улыбки» — пациенты с повреждением мозга. При инсульте в правой моторной коре — специализированной области, которая управляет сложными движениями на левой стороне тела, — проблемы возникают слева. Если вы попросите такого человека улыбнуться, то увидите ту же деланую, неестественную усмешку. Впрочем, зрелище будет даже отвратительней: фактически только половина улыбки на правой стороне лица. Однако, когда тот же самый пациент видит, как в палату входит любимый друг или родственник, его губы мгновенно растягиваются в широкую, естественную улыбку, затрагивающую обе стороны рта. Дело в том, что инсульт пощадил его базальные ганглии, а потому специальная нейронная цепь для создания симметричных улыбок осталась неповрежденной[11].

Изредка больной и не подозревает, что перенес инсульт, пока не попытается улыбнуться. Внезапно его близкие замечают, что улыбается только одна половина его лица. И все же, когда его просит улыбнуться невролог, у него получается симметричная, хотя и неестественная, усмешка — прямая противоположность предыдущему пациенту. Оказывается, в результате инсульта у этого парня оказались избирательно повреждены базальные ганглии на одной стороне мозга.

Еще одно доказательство наличия специализированных нейронных сетей — зевота. Как мы уже отмечали, многие пациенты с инсультом парализованы на правой или левой стороне тела, в зависимости от того, где находится очаг поражения. Произвольные движения на противоположной стороне исчезают навсегда. И все же, когда такой больной зевает, он вытягивает обе руки. К его изумлению, парализованная конечность внезапно оживает! Это происходит потому, что движение рук во время зевоты контролирует другой путь, тесно связанный с дыхательными центрами в стволе мозга.

Иногда микроскопическое поражение мозга, содержащего миллиарды здоровых клеток, может вызвать серьезные проблемы, которые кажутся абсолютно несоразмерными масштабам повреждения. Например, вы можете полагать, что в памяти участвует весь мозг. Когда я говорю слово «роза», оно вызывает всевозможные ассоциации: образы розового сада или первого свидания, на котором вам подарили этот цветок, его аромата, бархатных лепестков, женщины по имени Роза и так далее. Если такое простое понятие, как «роза», порождает столь многочисленные ассоциации, значит, для фиксации каждого следа памяти (энграммы) определенно нужен весь мозг.

Однако печальная история пациента, известного как Г. M., говорит совсем другое[12]. Поскольку Г. M. страдал фармакорезистентной формой эпилепсии, врачи решили удалить «больную» ткань с обеих сторон мозга, в том числе и две крошечные структуры (по одной с каждой стороны), по форме напоминающие морского конька, — гиппокамп, который отвечает за новые воспоминания. После операции Г. М. полностью утратил способность сохранять новую информацию, хотя прекрасно помнил все, что произошло до вмешательства. Сегодня врачи относятся к гиппокампу с бо́льшим уважением и никогда не станут сознательно удалять его с обеих сторон (рис. 1.3).

Рис. 1.3

Изображение мозга с частично прозрачной корой, под которой видны внутренние структуры. Посередине находится таламус (выделен темным); между ним и корой расположены базальные ганглии (не показаны). В височной доле находится миндалевидное тело («ворота» в лимбическую систему) и гиппокамп (отвечающий за память). Помимо миндалевидного тела, на рисунке можно видеть и другие части лимбической системы, например гипоталамус (расположен ниже таламуса). Пути лимбической системы опосредуют эмоциональное возбуждение. Полушария соединены со спинным мозгом мозговым стволом (состоящим из продолговатого мозга, моста и среднего мозга). Под затылочными долями находится мозжечок, отвечающий главным образом за координацию и синхронизацию движений.[13]

Хотя я никогда не работал с Г. M. лично, я часто видел пациентов с аналогичными формами амнезии, вызванной хроническим алкоголизмом или гипоксией (кислородным голоданием мозга после хирургического вмешательства). Разговаривать с ними — жуткий опыт. Когда я вхожу в палату к такому больному, он кажется вполне разумным и внятно говорит. Он может рассуждать на философские темы и с легкостью справляется с примерами на сложение или вычитание. Он эмоционально и психологически устойчив и охотно обсуждает свою семью.

Затем я приношу извинения и выхожу якобы в уборную. По возвращении я не вижу ни малейшего признака узнавания, ни малейшего намека на то, что этот человек видел меня раньше.

— Вы помните, кто я?

— Нет.

Я показываю больному авторучку.

— Что это?

— Ручка.

— Какого она цвета?

— Красная.

Я кладу ручку под подушку, которая лежит на соседнем стуле, и спрашиваю:

— Что я только что сделал?

Он отвечает быстро:

— Вы положили ручку вон под ту подушку.

Тогда я спрашиваю его о семье или о чем-нибудь еще. Проходит одна минута, и я задаю главный вопрос:

— Недавно я вам кое-что показал. Вы помните, что это было?

Больной явно озадачен.

— Нет.

— Вы помните, что я показал вам некий предмет? Вы помните, куда я его положил?

— Нет.

Он напрочь забыл, как я спрятал ручку, а ведь с тех пор прошло всего шестьдесят секунд!

Такие пациенты буквально застыли во времени: они помнят только те события, которые произошли до повреждения мозга, — свой первый бейсбольный матч, первое свидание, окончание колледжа и так далее. После травмы в их памяти не откладывается ничего. Они снова и снова перечитывают старую газету или детективный роман, каждый раз наслаждаясь сюжетом и неожиданной развязкой. Я могу рассказывать им одну и ту же шутку полдюжины раз, и каждый раз, стоит мне подойти к концовке, они смеются от души (кстати, мои аспиранты тоже так делают).

Эти больные говорят нам нечто очень важное — что крошечный отдел мозга, гиппокамп, абсолютно необходим для фиксации новых следов памяти (хотя фактические следы памяти в гиппокампе не хранятся). Кроме того, их амнезия наглядно иллюстрирует мощь модульного подхода и помогает существенно сузить область исследования: если вы хотите понять память, посмотрите на гиппокамп. И все же, как мы увидим далее, изучение одного гиппокампа никогда не объяснит всех аспектов памяти. Чтобы разобраться, как воспоминания извлекаются по нашему желанию, редактируются, подавляются (иногда даже подвергаются цензуре!), нужно установить, как гиппокамп взаимодействует с другими участками мозга, такими как лобные доли, лимбическая система (которая отвечает за эмоции) и структуры в мозговом стволе (которые позволяют выборочно обращать внимание на конкретные воспоминания).

Роль гиппокампа в формировании воспоминаний четко установлена, но существуют ли участки мозга, которые специализируются на более «продвинутых» способностях — например, «арифметическом мышлении», свойственном исключительно человеку? Недавно я познакомился с одним джентльменом, Биллом Маршаллом, неделей ранее перенесшим инсульт. Веселый и беззаботный, он находился на пути к выздоровлению и охотно согласился обсудить со мной свою жизнь и здоровье. Когда я попросил его рассказать о семье, он назвал имена всех своих детей, перечислил их профессии и подробно рассказал о внуках. Говорил он грамотно и бегло — большая редкость у больных сразу после инсульта.

— Кем вы работали? — спросил я Билла.

— Раньше я был пилотом ВВС, — ответил он.

— На каком самолете вы летали?

Билл назвал модель и добавил:

— В то время это была самая быстрая штуковина на планете.

Затем он рассказал, как быстро летал самолет, и сообщил, что его построили еще до изобретения реактивных двигателей.

В какой-то момент я сказал:

— Билл, вы можете вычесть семь из ста? Чему равно сто минус семь?

— О. Сто минус семь?

— Да.

— Х-м-м, сто минус семь… — протянул Билл.

— Да, сто минус семь.

— Вы хотите, чтобы я вычел семь из ста? Сто минус семь, да?

— Да.

— Девяносто шесть?

— Нет.

— О.

— Давайте попробуем другой пример. Чему равно семнадцать минус три?

— Семнадцать минус три? Знаете, я не очень хорош в математике, — пробормотал Билл.

— Скажите, — не унимался я, — это число будет меньше или больше семнадцати?

— Конечно, меньше, — просиял он.

— Отлично. Так сколько будет семнадцать минус три?

— Двенадцать? — наконец предположил Билл.

У меня возникли подозрения, что Билл плохо понимает числа и их природу. Это и неудивительно: проблема чисел — старый и глубокий философский вопрос, восходящий к самому Пифагору.

— Что такое бесконечность? — спросил я.

— О, это самое большое число, которое только есть на свете.

— Какое число больше: сто один или девяносто семь?

Билл ответил сразу:

— Сто один больше.

— Почему?

— Потому что в нем больше цифр.

Это означало, что Билл понимал сложные числовые понятия, такие как разряды и их значение. Кроме того, хотя он не смог вычесть три из семнадцати, его ответ не был вопиюще абсурдным. Он сказал «двенадцать», а не семьдесят пять или двести. Следовательно, он мог давать приблизительные оценки.

Подумав, я решил рассказать ему одну забавную историю:

— На днях один человек зашел в Американский музей естественной истории в Нью-Йорке и увидел огромный скелет динозавра. Он захотел узнать, сколько ему лет, поэтому он подошел к старому куратору, сидящему в углу, и спросил: «Скажите, пожалуйста, сколько лет этим костям?» — «О, им шестьдесят миллионов и три года, сэр», — ответил куратор. «Шестьдесят миллионов и три года? Я и не знал, что ученые могут так точно измерить возраст костей. Но подождите… Что вы имеете в виду — шестьдесят миллионов и три года?» — «Понимаете, — объяснил куратор, — когда меня взяли на эту работу три года назад, то сказали, что костям шестьдесят миллионов лет. Значит, сейчас им шестьдесят миллионов лет плюс три года».

Услышав концовку, Билл громко расхохотался. Очевидно, он разбирался в числах гораздо лучше, чем казалось на первый взгляд. Чтобы понять эту шутку, требуется весьма изощренный ум, особенно если учесть, что она содержит то, что философы называют «ошибкой неуместной конкретности».

Я повернулся к Биллу и спросил:

— Почему это смешно, как вы думаете?

— Ну, — протянул он, — уровень точности неуместен.

Итак, Билл понимает шутку и идею бесконечности, но не может вычесть три из семнадцати. Означает ли это, что у каждого из нас в районе левой угловой извилины (именно эта область была поражена у Билла в результате инсульта) имеется особый числовой центр, который отвечает за сложение, вычитание, умножение и деление? Думаю, что нет. Ясно одно: данная область — угловая извилина — каким-то образом необходима для вычислительных задач, но не нужна для других способностей, например для кратковременной памяти, речи или юмора. Как ни парадоксально, не нужна она и для понимания числовых понятий, лежащих в основе таких вычислений. Мы еще не установили, как работает «арифметическая» нейронная цепь в угловой извилине, но зато мы хотя бы знаем, куда смотреть[14].

У многих пациентов с дискалькулией наблюдается сопутствующее расстройство под названием пальцевая агнозия: они не могут сказать, на какой палец указывает невролог или к какому прикасается. Выходит, арифметические операции и способность различать пальцы занимают в мозге смежные области. Это простое совпадение или как-то связано с тем, что в детстве все мы учимся считать именно на пальцах? Тот факт, что у некоторых таких пациентов одна функция может оставаться сохранной (способность называть пальцы), в то время как другая (сложение и вычитание) исчезает навсегда, отнюдь не исключает того, что обе могут быть связаны и занимать в мозге одну и ту же анатомическую нишу. Вполне возможно, что обе функции лежат в непосредственной близости друг от друга и взаимозависят на этапе обучения, однако по мере взросления каждая обретает самостоятельность и может жить без своей соседки. Другими словами, ребенок не может не шевелить пальцами при счете, тогда как вам и мне этого делать не обязательно.

Исторические примеры и клинический материал из моих заметок говорят нам, что специализированные нейронные цепи, или модули, действительно существуют. Но есть и другие, одинаково интересные вопросы. Как именно работают эти модули? Как они «разговаривают» друг с другом, порождая сознательный опыт? В какой степени все эти сложные нейронные сети заданы нашими генами? Какие из них формируются под воздействием раннего опыта, по мере того как младенец взаимодействует с миром? (Довольно древняя дискуссия о роли воспитания и природы, которая продолжается уже сотни лет, но даже сегодня мы можем с уверенностью утверждать, что затронули лишь верхушку айсберга.) Даже если определенные нейронные цепи запрограммированы с рождения, значит ли это, что их нельзя изменить? Какая доля взрослого мозга поддается модификации? Чтобы узнать ответы на указанные вопросы, давайте познакомимся с Томом — одним из первых людей, которые оказали мне существенную помощь в исследовании этих более общих проблем.

Оглавление

Из серии: Наука, идеи, ученые

* * *

Приведённый ознакомительный фрагмент книги Фантомы мозга предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

Разумеется, я говорю о стиле, а не о содержании. Отбросив ложную скромность, скажу честно: я сомневаюсь, что наблюдения, изложенные в этой книге, не уступают в важности открытиям Фарадея. Тем не менее я убежден: всем ученым-исследователям следует взять его стиль на вооружение.

2

Конечно, едва ли кому-нибудь придет в голову идеализировать нетехнологичную науку. Я просто хочу сказать, что бедность и грубое оборудование иногда могут, как это ни парадоксально, послужить скорее катализатором, нежели помехой: именно они делают из ученого гения изобретательности. Впрочем, нельзя отрицать, что инновационные технологии способствуют развитию науки не меньше, чем сами идеи. В следующем тысячелетии новые методы визуализации, такие как ПЭТ, фМРТ и МЭГ, по всей вероятности, произведут настоящую революцию, позволив нам увидеть живой мозг в действии, во время выполнения разного рода умственных задач (См. Posner & Raichle, 1997; Phelps & Mazziotta, 1981). К сожалению, в последнее время в научных кругах наблюдается неоправданный ажиотаж (как в девятнадцатом веке вокруг френологии). Правда, если использовать их разумно, эти игрушки могут оказаться невероятно полезными. Лучшие эксперименты — это эксперименты, в которых картинка сочетается с четкими, поддающимися проверке гипотезами о том, как на самом деле работает мозг. Во многих случаях, чтобы понять, что происходит внутри нашей головы, необходимо проследить всю цепочку событий от начала и до конца; с некоторыми такими случаями мы столкнемся в этой книге.

3

Полагаю, легче всего ответить на этот вопрос, изучая насекомых. Как известно, развитие насекомых включает несколько специфических стадий, каждая из которых длится строго определенный период времени. (Например, вид цикад Magicicada septendecim 17 лет пребывает в виде незрелой нимфы и всего несколько недель в виде взрослой особи!) Манипулируя гормоном экдизоном или антителами к нему, теоретически можно изменять длительность каждой стадии и оценить, как это влияет на общую продолжительность жизни. Например, подарит ли блокировка экдизона вечную жизнь гусенице? И наоборот, если гусеницу побыстрее превратить в бабочку, эта бабочка будет жить дольше или нет?

4

В DSM-IV, DSM-V и МКБ-11 — диссоциативное расстройство идентичности. (Примеч. пер.)

5

В 1928 году, задолго до того, как Джеймс Уотсон и Фрэнсис Крик установили роль, которую играет в наследственности дезоксирибонуклеиновая кислота (ДНК), Фред Гриффитс заметил странную вещь: если ввести мышам убитые нагреванием пневмококки определенного вида — так называемый штамм S — вместе с другим штаммом (штаммом R), последний «трансформируется» в штамм S! Очевидно, в бактериях S присутствовало нечто такое, что заставляло R-форму превращаться в S-форму. Позже, уже в 1940-х годах, Освальд Эвери, Колин Маклеод и Маклин Маккарти показали, что все дело в одном химическом веществе, ДНК. Вывод — что ДНК содержит генетический код — должен был вызвать цунами в мире биологии, но в реальности спровоцировал лишь незначительное волнение.

6

Существует множество разных подходов к изучению мозга. Один метод, особенно популярный у психологов, — так называемый подход «черного ящика»: вы систематически изменяете вход, смотрите, как при этом меняется выход, а затем строите модель того, что происходит в промежутке. Если вам кажется, что это звучит скучно, так и есть. Тем не менее именно этому подходу мы обязаны некоторыми ошеломительными открытиями — например, открытием трихромазии как основного механизма цветового зрения. Ученые обнаружили, что все цвета, которые способен видеть человек, представляют собой простые комбинации трех основных цветов в разных пропорциях — красного, зеленого и синего. Следовательно, заключили они, в нашем глазу есть только три типа рецепторов, каждый из которых максимально реагирует на одну длину волны и в меньшей степени — на другие длины волн. Главная проблема с подходом «черного ящика» состоит в том, что рано или поздно у исследователя накапливается множество конкурирующих моделей. Как же определить, какая из них верная? Единственный способ это сделать — открыть «черный ящик», то есть провести физиологические эксперименты на людях и животных. Лично я очень сомневаюсь, что кто-то мог сообразить, как работает пищеварительная система, просто глядя на… результаты ее деятельности. Изучая только вход и выход, никто бы не догадался, что существует жевание, перистальтика, слюна, желудочные соки, ферменты поджелудочной железы и желчь. Кто бы заподозрил, что одна печень выполняет в пищеварительном процессе дюжину функций? И все же большинство психологов — так называемые функционалисты — упрямо придерживаются мнения, что понять умственные процессы можно сквозь призму вычислительного, бихевиористского подхода — не утруждая себя непосредственным изучением этой морщинистой штуки, которая находится у нас в голове.

В биологических системах понимание функции невозможно без понимания структуры. Эта точка зрения прямо противоречит функционалистскому подходу к работе мозга, но я убежден, что только она и есть правильная. Взять хотя бы ДНК. Понимание ее анатомии в корне изменило наше представление о наследственности и генетике, которая до тех пор оставалась тем самым «черным ящиком». Как только была открыта двойная спираль, стало очевидно, что структурная логика этой молекулы диктует функциональную логику наследственности.

7

Источник: (а) — Ramachandran; (б) и (в) — Zeki, 1993.

8

Последние лет пятьдесят нейронаука тяготеет к редукционизму. Ученые отчаянно пытаются разложить сложные явления на простейшие составляющие в надежде, что изучение маленьких частей в итоге поможет понять целое. В некоторых случаях такой подход, и правда, дает впечатляющие результаты. К несчастью, многие люди искренне верят, будто для понимания мозга одного редукционизма вполне достаточно. Целые поколения исследователей были воспитаны на этой догме. Однако не так давно, на одной научной конференции, видный психолог из Кембриджа, Хорас Барлоу, заметил, что мы потратили пятьдесят лет на подробнейшее изучение коры головного мозга, но по-прежнему не имеем даже смутного представления о том, как она работает и что делает. К ужасу всех присутствующих, он сравнил нас с бесполыми марсианами, которые прилетели на Землю и угробили полвека на изучение клеточного строения и биохимии семенников, но так ничего и не узнали о сексе.

9

Франц Галль — психолог восемнадцатого века, основатель модной псевдонауки френологии — довел доктрину модулярности до абсурда. Однажды, читая лекцию, Галль заметил, что у одного — очень сообразительного — студента необычно выпуклые глазные яблоки. «Почему у него такие выпуклые глазные яблоки? — задумался Галль. — Может, лобные доли имеют какое-то отношение к интеллекту? Может, у этого юноши они особенно большие и давят на глаза?» В итоге Галль провел целую серию экспериментов, в рамках которых измерял шишки и впадины на черепах своих испытуемых. Найдя отличия, он попытался сопоставить формы с различными психическими функциями. Скоро френологи «обнаружили» шишки для таких экзотических черт как благоговение, осторожность, величественность, жажда наживы и скрытность. В антикварном магазине в Бостоне один мой коллега недавно видел френологический бюст с шишкой для «республиканского духа»! Френология была по-прежнему популярна в конце девятнадцатого и начале двадцатого века.

Особый интерес у френологов вызывала связь размера мозга и умственных способностей. Они утверждали, что более тяжелый мозг умнее более легкого, что мозг чернокожих людей меньше, чем мозг белых, а мозг женщины меньше мозга мужчины. По их мнению, именно эта разница в размерах и «объясняла» различия в средних показателях интеллекта между этими группами. По иронии судьбы, когда Галль умер, коллеги взвесили его мозг и обнаружили, что он был на несколько граммов легче среднестатистического женского мозга. (Красноречивое описание френологии, ее постулатов и заблуждений, см. Stephen Jay Gould, The Mismeasure of Man).

10

Главный герой кинофильма режиссера Стэнли Кубрика «Доктор Стрейнджлав, или Как я перестал бояться и полюбил бомбу», вышедшего в 1964 году. (Примеч. пер.)

11

Эти два примера — излюбленные примеры гарвардского невролога Нормана Гешвинда, которые он неизменно приводил в каждой своей лекции для неспециалистов.

12

Представления о роли структур медиальной височной доли, включая гиппокамп, в формировании воспоминаний восходят к русскому психиатру Сергею Корсакову. Г. М., а также других пациентов с амнезией изучали Бренда Милнер, Ларри Вайскранц, Элизабет Уоррингтон и Ларри Сквайр. Фактические изменения на клеточном уровне, способствующие укреплению связей между нейронами, подробно исследовали многие ученые, в частности Эрик Кэндел, Дэн Алкон, Гэри Линч и Терри Сейновски.

13

Источник: Bloom & Laserson, Brain, Mind and Behavior. Educational Broadcasting Corporation, 1988.

14

Поскольку наша способность осуществлять числовые вычисления (складывать, вычитать, умножать и делить) практически не требует усилий, можно подумать, будто она «запрограммирована» изначально. Это не так. На самом деле она перестала требовать усилий только в третьем веке н. э., после введения в Индии двух базовых понятий — разрядного значения и нуля. Вкупе с идеей отрицательных чисел и десятичных дробей они заложили фундамент современной математики.

Некоторые ученые утверждают, что мозг содержит графическую скалярную репрезентацию чисел — своеобразный «числовой ряд». При этом каждая точка представляет собой кластер нейронов, сигнализирующих определенную числовую величину. Абстрактное математическое понятие числового ряда восходит к персидскому поэту и математику Омару Хайяму, жившему в девятом веке, но есть ли доказательства существования такого ряда в мозге? Нормальные люди, когда их спрашивают, какое из двух чисел больше, думают дольше, если заданные числа расположены близко друг к другу на числовой оси. У Билла числовой ряд кажется сохранным, поскольку он с легкостью дает приблизительные количественные оценки — какое число больше или меньше или почему шестьдесят миллионов и три года — неуместный возраст для костей динозавров. Но сами числовые вычисления — жонглирование числами в голове — опосредует отдельный механизм, и для него нужна угловая извилина в левом полушарии. Исключительно простое и занимательное описание дискалькулии см. Dehaene, 1997.

С помощью фМРТ мой коллега, доктор Тим Риккард из Калифорнийского университета в Сан-Диего, показал, что «область числовых вычислений» в действительности расположена не совсем в классической левой угловой извилине, а смещена чуть вперед. Впрочем, это открытие не опровергает мой главный аргумент: благодаря новейшим методикам нейровизуализации рано или поздно кто-нибудь обязательно продемонстрирует «числовой ряд» — это всего лишь вопрос времени.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я