В этой книге мы расскажем вам об основных понятиях Искусственного интеллекта и Машинного обучения. Вы познакомитесь с основными алгоритмами и моделями, использующимися для решения абсолютно разных задач. Мы научимся предсказывать цены на квартиры, ВВП стран, распределим цветы на разные классы и даже построим собственную нейронную сеть, которая сможет предсказывать, что изображено на рисунке. Для желающих овладеть языком программирования Python, на котором решается большинство задач по машинному обучению, мы пройдем основы программирования на этом языке и научимся использовать его для построения моделей машинного и глубокого обучения.
Приведённый ознакомительный фрагмент книги Искусственный интеллект и Машинное обучение. Основы программирования на Python предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Примеры использования ИИ, МО и ГО
Давайте посмотрим несколько примеров использования Искусственного интеллекта, машинного и глубокого обучения в нашей повседневной жизни.
Искусственный интеллект
Все лунные модули, которые бороздят поверхность Луны, используют алгоритмы ИИ. Их не надо контролировать каждую секунду, они сами принимают решения как объезжать препятствия и как собрать грунт в том или ином труднодоступном месте.
ИИ применяется и в беспилотных автомобилях. С помощью множества сенсоров, такие автомобили анализируют находящуюся вокруг них обстановку, определяют другие движущиеся машины, пешеходов, знаки дорожного движения, разметку, выбирают кратчайший путь и т.д.
Наше взаимодействие с голосовыми помощниками. Когда мы просим Алексу, Сири, или Алису от Яндекса сделать или найти что-то, они конвертируют наш голос в команды, обрабатывают их и выдают то, что нам необходимо.
Кроме голосовых помощников, очень развиты сейчас чат-боты, когда вы можете переписываться с компьютером, и он будет отвечать на ваши запросы. А в последнее время участились и звонки роботов на наши мобильные телефоны. Они могут предлагать какие-то рекламные акции или даже расспрашивать у вас информацию, например, когда вы планируете погасить кредитную задолженность. Такие роботы уже заменили многих сотрудников колл-центров.
Машинное обучение
Улучшение выдачи результатов поиска в Google. Когда ты вбиваешь какой-то запрос в поисковой строке, тебе выводится несколько ссылок. Если ты заходишь по одной из ссылок на первой странице, и просматриваешь страницу и проводишь там какое-то время изучая и читая информацию на этой странице, Google понимает, что ты нашел что искал. Когда заходишь на вторую, третью страницу, и видишь, что все это не то, то Google понимает, что это менее нужная информация, и в следующий раз когда другой человек зайдет на Google и спросит его об этом же, то Google будет знать, что лучше выдать в первой строчке на первой странице.
Решение о выдаче кредита банком. Компьютер анализирует большое количество параметров потенциального заемщика и потом распределяет его в категорию хороший или плохой заемщик, либо дает ему конкретный кредитный скоринг. Все это происходит на основе кредитной истории предыдущих заемщиков и как они схожи с потенциальным новым заемщиком. Выборка постоянно дополняется историей каждого нового заемщика, расплатился ли он с кредитом и выплатил ли его вовремя, она обновляется, и также обновляется и алгоритм, находятся новые закономерности, которые позволяют принимать правильные решения о выдаче кредита новому заемщику.
Выбор места для ритейла. В ритейле одним из самых главных факторов, которые влияют на прибыльность бизнеса, является местоположение. У сети кофеен Старбакс имеется около 30 000 локаций по всему миру. Вы накопили большой объем информации о том, в каких местах продажи лучше. На основе этой информации вы можете составить алгоритм по выбору наиболее удачного места в новой локации. Ваши переменные могут включать геохарактеристики (расстояние до центра города, до метро, цена за квадратный метр), трафик (число маршрутов наземного транспорта в разных радиусах от локации) и наличие тех или иных объектов рядом, например, торговых центров, бизнес-центров, домов, школ и банков.
Глубокое обучение
Очень часто ГО используется для распознавания объектов на изображениях. Кроме того, с помощью ГО черно-белые изображения или фильмы можно сделать цветными. До этого компьютер уже обработал большое количество данных и информации в интернете либо в базе данной, которую ему предоставили для этого, и он уже знает различные оттенки серого и может легко понять в какой цвет необходимо преобразить тот или иной пиксель изображения.
Машинный перевод. Возможно, кто-то из вас использовал Google Translate, и вы могли заметить насколько хорошо он переводит в последнее время. Практически ничего не надо исправлять. Но если вспомнить примерно 5 или 7 лет назад, то качество перевода было далеко от идеального. А все потому, что сейчас вместо множества правил как надо переводить, используются нейронные сети, через которые уже прошли миллионы переводов художественной, технической и другой литературы, и эти алгоритмы ГО все продолжают улучшаться.
Интеллектуальные игры: шахматы, Го, Дота 2, покер и другие. Долгое время считалось, что компьютер никогда не превзойдет по силе мысли человека до тех пор, пока он не сможет обыграть его в шахматы. Однако, это случилось в конце 20 века, а в 2010-х годах, компьютер, обученный алгоритмами ГО, смог обыграть и чемпионов в го — игру, которая считается даже еще более сложной чем шахматы. Сейчас не проходит и года, как не появляется очередная новость о том, что компьютер обыграл человека в очередной игре. ИИ уже обыграл людей в покер, Доту 2 и другие интеллектуальные игры. Все это получилось благодаря задействованию нейронных сетей и ГО.
Распознавание злокачественных заболеваний на коже или органах человека. Одним из самых полезных применений ИИ — это медицина. С помощью ГО и нейронных сетей компьютеры сегодня могут распознавать злокачественные опухоли еще на ранней стадии и даже лучше, чем опытные доктора. Это хорошо еще и тем, что пациент, находящийся в одной точке земного шара, может переслать свои снимки в лабораторию в другой стране для принятия решения. Предсказывается, что в будущем роботы с помощью ИИ будут выполнять все больше и больше сложных операций без участия человека.
Еще одним популярным применением ГО являются так называемые рекомендательные системы: когда при покупке одного товара нам предлагают другой. Наверное, вы видели, когда на сайте появляется фраза: «с этим товаром часто покупают». Или при просмотре фильма, или книги на сайте агрегаторе, вам начинают предлагать фильмы и книги похожей категории или те фильмы, которые смотрели пользователи, похожие на вас по различным параметрам. Все это алгоритмы ИИ, подкрепленные НС.
И в конце, на что еще хотелось бы обратить внимание. Как уже было сказано, и ГО и МО являются только частью более общей области под названием ИИ. Так вот, в сложных проектах, как правило, присутствует несколько видов алгоритмов ИИ, и глубокое обучение и машинное обучение, и другие виды. Например, во время движения беспилотного автомобиля участвует более 100 различных алгоритмов, которые ответственны за распознавание объектов, управление движением, навигацию, безопасность, и т.д.
Как вы заметили по приведенным примерам, ИИ уже используется во многих областях в нашей повседневной жизни. Считается, что в ближайшие пару десятилетий ИИ будет использоваться большинством компаний и охватывать большую часть нашей жизнедеятельности.
Приведённый ознакомительный фрагмент книги Искусственный интеллект и Машинное обучение. Основы программирования на Python предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других