Значение словосочетания «алгебраическая система»

Источник: Викисловарь

  • Алгебраическая система в универсальной алгебре — множество

    G

    {\displaystyle G}

    (носитель) с заданным на нём набором операций и отношений (сигнатурой). Алгебраическая система с пустым множеством отношений называется алгеброй, а система с пустым множеством операций — моделью.

    n

    {\displaystyle n}

    -арная операция на

    G

    {\displaystyle G}

    — это отображение прямого произведения

    n

    {\displaystyle n}

    экземпляров множества в само множество

    G

    n

    G

    {\displaystyle G^{n}\to G}

    . По определению, нульарная операция — это просто выделенный элемент множества. Чаще всего рассматриваются унарные и бинарные операции, поскольку с ними легче работать, но в связи с нуждами топологии, алгебры, комбинаторики постепенно накапливается техника работы с операциями большей арности, здесь в качестве примера можно привести теорию операд (клонов полилинейных операций) и алгебр над ними (мультиоператорных алгебр).

    Понятие возникло из наблюдений за общностью конструкций, характерных для различных общеалгебраических структур, таких как группы, кольца, решётки; в частности, таковы конструкции подсистемы (обобщающей понятия подгруппы, подкольца, подрешётки соответственно), гомоморфизма, изоморфизма, факторсистемы (обобщающей соответственно конструкции фактогруппы, факторкольца, факторешётки). Эта общность изучается в самостоятельном разделе общей алгебры — универсальной алгебре, при этом получен ряд содержательных результатов, характерных для любых алгебраических систем, например, такова теорема о гомоморфзиме, которая в случае алгебраической системы без заданных отношений — алгебры, уточняется до теорем об изоморфизме, известных ранее из теории групп и теории колец.

    В математике с той или иной степенью строгости также используется понятие «алгебраической структуры», в частности, у Бурбаки оно формализовано как множество, наделённое операциями, при этом множество, наделённое отношениями (наличие которых возможно для алгебраической системы) уже рассматривается как математическая структура другого рода — структура порядка. Однако и не все алгебраические структуры описываются алгебраическими системами без дополнительных конструкций, в качестве примера таковых можно упомянуть коалгебры, биалгебры, алгебры и комодули над ними; кроме того, даже для определения таких классических структур, как модуля над кольцом или алгебры, в универсальной алгебре используются такие искусственные конструкции, как определение для каждого элемента кольца (поля) унарной операции умножения на этот элемент.

Источник: Википедия

Делаем Карту слов лучше вместе

Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!

Спасибо! Я стал чуточку лучше понимать мир эмоций.

Вопрос: натасчик — это что-то нейтральное, положительное или отрицательное?

Нейтральное
Положительное
Отрицательное
Не знаю

Предложения со словосочетанием «алгебраическая система»

Понятия, связанные со словосочетанием «алгебраическая система»

  • В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.

    Подробнее: Симметрическая алгебра
  • Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
  • А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
  • Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
  • Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
  • (все понятия)

Афоризмы русских писателей со словом «система»

Отправить комментарий

@
Смотрите также

Предложения со словосочетанием «алгебраическая система»

  • У людей и вещей абстрактная и потому одинаковая судьба – одинаково неопределённое положение в алгебраической системе координат тайны.

  • Здесь впервые стали производить изделия из бронзы и цветного стекла, составлять календари, рецептурные справочники и библиотечные каталоги, создали первую регулярную армию и правовой кодекс, а также изобрели всем известное колесо, знаменитое клинописное письмо, алгебраическую систему исчисления и древние счёты.

  • Так, левая и правая части математических равенств, соединённых знаком =, всегда синонимичны; и на этом построены все алгоритмы алгебраических систем.

  • (все предложения)

Синонимы к словосочетанию «алгебраическая система»

Ассоциации к слову «система»

Морфология

Правописание

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я