Связанные понятия
Аденин — азотистое основание, аминопроизводное пурина (6-аминопурин). Образует две водородных связи с урацилом и тимином (комплементарность).
Урацил (2,4-диоксопиримидин) — пиримидиновое основание, которое является компонентом рибонуклеиновых кислот и как правило отсутствует в дезоксирибонуклеиновых кислотах, входит в состав нуклеотида. В составе нуклеиновых кислот может комплементарно связываться с аденином, образуя две водородные связи.
Цитозин — органическое соединение, азотистое основание, производное пиримидина. С рибозой образует нуклеозид цитидин, входит в состав нуклеотидов ДНК и РНК. Во время репликации и транскрипции по принципу комплементарности образует три водородных связи с гуанином.
Нуклеоти́ды (нуклеозидфосфаты) — группа органических соединений, представляют собой фосфорные эфиры нуклеозидов. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Тимин (5-метилурацил) — производное пиримидина, одно из пяти азотистых оснований. Присутствует во всех живых организмах, где вместе с дезоксирибозой входит в состав нуклеозида тимидина, который может фосфорилироваться 1—3 остатками фосфорной кислоты с образованием нуклеотидов тимидин моно-, ди- или трифосфорной кислоты (ТМФ, ТДФ и ТТФ). Дезоксирибонуклеотиды тимина входят в состав ДНК, в РНК на его месте располагается рибонуклеотид урацил. Тимин комплементарен аденину, образуя с ним 2 водородные...
Упоминания в литературе
С химической точки зрения ген представляет собой участок молекулы дезоксирибонуклеиновой кислоты (ДНК). Огромная полимерная молекула дезоксирибонуклеиновой кислоты состоит из повторяющихся блоков, называемых «нуклеотидами». Нуклеотид состоит из
азотистого основания , сахара и фосфатной группы. В состав ДНК могут входить четыре вида азотистых оснований – аденин, гуанин, тимин и цитозин.
В ДНК входят четыре вида нуклеотидов, отличающихся по
азотистому основанию в их составе, – аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В молекуле РНК также имеется 4 вида нуклеотидов с одним из азотистых оснований – аденином, гуанином, цитозином и урацилом (У). Таким образом, ДНК и РНК различаются как по содержанию сахара в нуклеотидах, так и по одному из азотистых оснований (табл. 5).
Инозин является предшественником пуриновых
азотистых оснований нуклеиновых кислот. Попадая в клетки, он усиливает синтез нуклеиновых кислот; активирует новообразование ферментов; является основой для образования макроэргов. Ряд исследователей отмечает его эффективность при одновременном приеме с другими анаболизаторами, например, с креатином.
Все экстрактивные вещества рыбы можно классифицировать на несколько групп по принадлежности к определенным классам органических соединений и по пищевой ценности: летучие
азотистые основания , аммониевые основания, фосфорсодержащие вещества, свободные аминокислоты и пептиды, разные вещества.
Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спирали ДНК и разрывает водородные связи между
азотистыми основаниями . Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклео-тиды дочерних цепочек. В результате репликации образуются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полуконсервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.
Фосфолипиды – фосфорилированные производные липидов, состоящие из фосфорной кислоты, жирных кислот, многоатомных спиртов,
азотистых оснований . В клинической практике определяются общие фосфолипиды, которые состоят из:
Пиримидиновые основания, цитозин и тимин, рассеивают энергию несколько хуже, чем пурины, и, соответственно, менее устойчивы. Однако образование комплементарных пар улучшает рассеивание энергии еще примерно в 50 раз благодаря обмену протонами в водородных связях пары. Поэтому устойчивость комплементарной пары нуклеотидов к ультрафиолету выше, чем каждого из них по отдельности. Кроме того, в нуклеиновых кислотах плоские молекулы
азотистых оснований лежат стопкой, поэтому их пи-электронные системы взаимодействуют между собой (так называемое стэкинг-взаимодействие) и могут передавать друг другу энергию возбуждения, еще усиливая рассеивание и дополнительно увеличивая устойчивость к ультрафиолету – до 20 раз по сравнению с одной комплементарной парой нуклеотидов (Mulkidjanian et al., 2003).
Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в смектических кристаллах. Такие липотропные жидкокристаллические фазы, дающие в поляризованном свете характерную оптическую картину, при последующем разбавлении легко превращаются в мембраноподобные структуры за счет полиморфных переходов (Чистяков, Селезнев, 1977, с. 38–45). Эти и другие исследования подтвердили тот факт, что на самых ранних стадиях химической эволюции могли возникнуть достаточно простые липидоподобные и липидные молекулы, спонтанно образующие мембранные структуры. Следовательно, и формирование систем, подобных протоклеткам, могло предшествовать синтезу более сложных полимерных молекул. Имеются все основания считать, что в период биопоэза (его первого этапа) на Земле за счет высоких температур в присутствии руд различных металлов и при воздействии на смеси газов ультрафиолетового и у-излучения синтезировались не только аминокислоты, но и некоторые сахара, жирные кислоты и
азотистые основания . Жирные кислоты в последующем, соединившись со спиртами, могли образовывать липидные пленки на поверхности водоемов, в которых были растворены азотистые основания, сахара и аминокислоты. Растворенные в водоемах белковые молекулы могли адсорбироваться на поверхности липидной пленки благодаря электрическому притяжению к заряженным обращенным в воду липидным головкам. По-видимому, эти условия и предопределили возникновение мембран и встроенных в них белков.
Свободный радикал, реагируя с другими молекулами, нередко попросту отбирает «недостающий до пары» электрон у «соседа», превращая того в следующий свободный радикал, который также реагирует с другой молекулой – до бесконечности, по принципу цепной реакции. При этом молекула, превращенная в свободный радикал, нередко теряет способность выполнять свою биологическую функцию. Упомянутая цепная реакция также может приводить к «слипанию» молекул. Так, «сшивки» в ДНК (если свободнорадикальная реакция включает пары
азотистых оснований в ДНК-молекуле) могут быть причиной онкологических заболеваний, «сшивки» между липидами и белками приводят к образованию морщин. Окисление же липопротеидов низкой плотности ведет к формированию атеросклеротических бляшек на стенках сосудов.
Связанные понятия (продолжение)
Гуани́н (Гуа, Gua) — органическое соединение, азотистое основание, аминопроизводное пурина (2-амино-6-оксопурин), является составной частью нуклеиновых кислот. В ДНК, при репликации и транскрипции образует три водородных связи с цитозином (Cyt) (комплементарность). Впервые выделен из гуано.
Комплемента́рность (в химии, молекулярной биологии и генетике) — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий (образование водородных связей, гидрофобных взаимодействий, электростатических взаимодействий заряженных функциональных групп и т. п.).
Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.
Метили́рование — введение в органические соединения метильной группы -СН3 вместо атома водорода, металла или галогена. Частный случай алкирования. Метилирование в терминальном положении приводит к удлинению углеродной цепи в молекуле на 1 атом.
Первичная структура (англ. primary structure) биологической молекулы — точное обозначение атомной структуры и расположения химических связей между атомами (включая стереохимию). Для стандартного биополимера, в молекуле которого нет разветвлений и перекрестных связей (например, ДНК, РНК или белков) понятие первичной структуры является синонимом последовательности остатков мономеров (нуклеотидов или аминокислот). Считается, что термин «первичная структура» был впервые употреблён Линнерстрёмом-Лангом...
Праймер (англ. primer) — это короткий фрагмент нуклеиновой кислоты (олигонуклеотид), комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы (при репликации ДНК). Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3'-конца (гидроксильной группы) праймера. ДНК-полимераза последовательно добавляет к 3'-концу праймера нуклеотиды, комплементарные матричной цепи.
Остаток в биохимии и молекулярной биологии — структурная единица биополимера, состоящего из аминокислот и сахаров; часть мономера, которая остаётся неизменной после включения его в биополимер. Например, остатками принято называть аминокислотные звенья, входящие в состав пептида. Остатки уже не являются аминокислотами, так как в результате реакции конденсации, они утратили по одному атому водорода из аминогруппы и гидроксил, входящий в состав карбоксильной группы. Кроме того, остатками также считаются...
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот - это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде).
Транспортная РНК, тРНК — рибонуклеиновая кислота, функцией которой является транспортировка аминокислот к месту синтеза белка. Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм. тРНК также принимают непосредственное участие в наращивании полипептидной цепи, присоединяясь — будучи в комплексе с аминокислотой — к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса.
Пиримидин (C4N2H4, 1,3- или м-диазин, миазин) — гетероциклическое соединение, имеющее плоскую молекулу, простейший представитель 1,3-диазинов.
Нуклеозиды — это гликозиламины, содержащие азотистое основание, связанное с сахаром (рибозой или дезоксирибозой).
Экзонуклеазы — белки из группы нуклеаз, отщепляющие концевые мононуклеотиды от полинуклеотидной цепи путём гидролиза фосфодиэфирных связей между нуклеотидами.
Нуклеи́новая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.
Субстра́т в биохимии — исходное вещество, преобразуемое ферментом в результате специфического фермент-субстратного взаимодействия в один или несколько конечных продуктов. После окончания катализа и высвобождения продукта реакции активный центр фермента снова становится вакантным и может связывать другие молекулы субстрата.
Нуклеазы — большая группа ферментов, гидролизующих фосфодиэфирную связь между субъединицами нуклеиновых кислот. Различают несколько типов нуклеаз в зависимости от их специфичности: экзонуклеазы и эндонуклеазы, рибонуклеазы и дезоксирибонуклеазы, рестриктазы и некоторые другие. Рестриктазы занимают важное положение в прикладной молекулярной биологии.
Подробнее: Нуклеаза
Диме́р (от др.-греч. δι- «два» + μέρος «часть») — сложная молекула, составленная из двух более простых молекул, называемых мономерами данной молекулы.Димеры могут состоять как из одинаковых мономеров (гомодимеры), так и из разных мономеров (гетеродимеры). Мономеры могут быть как органическими, так и неорганическими.
Процессинг РНК (посттранскрипционные модификации РНК) — совокупность процессов в клетках эукариот, которые приводят к превращению первичного транскрипта в зрелую РНК.
Третичная структура (или трёхмерная структура) — пространственное строение (включая конформацию) всей молекулы белка или другой макромолекулы, состоящей из единственной цепи.
Конформа́ция молекулы (от лат. conformatio «форма, построение, расположение») — пространственное расположение атомов в молекуле определённой конфигурации, обусловленное поворотом вокруг одной или нескольких одинарных сигма-связей. В некоторых случаях в конформационные преобразования включают и пирамидальные инверсии и другие политопные перегруппировки неорганических и элементоорганических соединений.
Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.
Вторичная структура — конформационное расположение главной цепи (англ. backbone) макромолекулы (например, полипептидная цепь белка или цепи нуклеиновых кислот), независимо от конформации боковых цепей или отношения к другим сегментам. В описании вторичной структуры важным является определение водородных связей, которые стабилизируют отдельные фрагменты макромолекул.
Цистеин (α-амино-β-тиопропионовая кислота; 2-амино-3-меркаптопропановая кислота) — алифатическая серосодержащая аминокислота. Оптически активна, существует в виде L- и D- изомеров. L-Цистеин входит в состав белков и пептидов, играет важную роль в процессах формирования тканей кожи. Имеет значение для дезинтоксикационных процессов.
Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать транскрипцию этих генов.
Кофактор — небелковое (и не производное от аминокислот) соединение (часто ион металла), которое нужно белку для его биологической деятельности. Эти белки обычно являются ферментами, поэтому кофакторы называют «молекулами-помощниками», которые участвуют в биохимических превращениях.
Белковая субъединица в структурной биологии — полипептид, который вместе с другими компонентами собирается в мультимерный или олигомерный белковый комплекс. Многие природные ферменты и другие белки состоят из нескольких белковых субъединиц.
Гистиди́н (L-α-амино-β-имидазолилпропионовая кислота) — гетероциклическая альфа-аминокислота, одна из 20 протеиногенных аминокислот. Является одной из двух условно-незаменимых аминокислот (наряду с аргинином). Незаменимой является только для детей.
Рибонуклеазы (РНКазы, англ. Ribonuclease, RNase) — ферменты-нуклеазы, катализирующие деградацию РНК. Рибонуклеазы классифицируют на эндорибонуклеазы и экзорибонуклеазы. К рибонуклеазам относят некоторые подклассы КФ 2.7 и КФ 3.1.
Сигнальный пептид , или сигнальная последовательность, — короткая (от 3 до 60 аминокислот) аминокислотная последовательность в составе белка, которая обеспечивает котрансляционный или посттрансляционный транспорт белка в соответствующую органеллу (ядро, митохондрия, эндоплазматический ретикулум, хлоропласт, апопласт или пероксисома). После доставки белка в органеллу сигнальный пептид может отщепляться под действием специфической сигнальной протеазы.
Олигомер ы, способные складываться в устойчивую вторичную структуру подобно белкам, называются фолдамерами.
Кодо́н (кодирующий тринуклеотид) — единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, обычно кодирующих включение одной аминокислоты. Последовательность кодонов в гене определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном.
Пурин — простейший представитель имидазопиримидинов. Бесцветные кристаллы, хорошо растворимые в воде, горячем этаноле и бензоле, плохо растворимые в диэтиловом эфире, ацетоне и хлороформе.
Доме́н белка ́ — элемент третичной структуры белка, представляющий собой достаточно стабильную и независимую подструктуру белка, фолдинг которой проходит независимо от остальных частей. В состав домена обычно входит несколько элементов вторичной структуры. Сходные по структуре домены встречаются не только в родственных белках (например, в гемоглобинах разных животных), но и в совершенно разных белках.
Эндонуклеазы — белки из группы нуклеаз, расщепляющие фосфодиэфирные связи в середине полинуклеотидной цепи. Эндонуклеазы рестрикции, или рестриктазы, расщепляют ДНК в определенных местах (так называемых сайтах рестрикции), они подразделяются на три типа (I, II и III) на основании механизма действия. Эти белки часто используют в генной инженерии для создания рекомбинантных ДНК, которые вводят затем в бактериальные, растительные или животные клетки.
Спаренные основания — пара двух азотистых оснований нуклеотидов на комплементарных цепочках нуклеиновых кислот (противоположных ДНК или одинаковых РНК), соединённая с помощью водородных связей.
Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации в одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.Однако в 1970 году Темин...
Гисто́ны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация. Существует пять различных типов гистонов H1/Н5, H2A, H2B, H3, H4. Гистоны H2A, H2B, H3, H4, называемые кóровыми гистонами (от англ. core — сердцевина), формируют нуклеосому, представляющую собой белковую глобулу, вокруг которой накручена нить ДНК. Гистон H1/H5, называемый линкерным гистоном...
Гликаны , в состав которых входят одинаковые углеводные звенья (гомополисахариды), называются гомогликанами, если цепь образована различными углеводными звеньями (гетерополисахариды) — гетерогликанами.
Алани́н (2-аминопропановая кислота) — алифатическая аминокислота. α-Аланин входит в состав многих белков, β-аланин — в состав ряда биологически активных соединений.
Консервати́вные после́довательности (англ. conserved sequences) — схожие или идентичные последовательности, встречающиеся в биологических полимерах: нуклеиновых кислотах, первичной и пространственной структурах белков, полисахаридах как в пределах особей разных видов (ортологичные последовательности), так и в пределах одной особи (паралогичные последовательности). Ортологичные последовательности являются подтверждением того, что определённые последовательности могут поддерживаться эволюцией, несмотря...
Дезаминирование — процесс удаления аминогрупп от молекулы. Ферменты, катализирующие дезаминирование, называют деаминазами.
Проли́н (пирролидин-α-карбоновая кислота) — гетероциклическая аминокислота, в которую атом азота входит в составе вторичного, а не первичного, амина (в связи с чем пролин правильнее называть иминокислотой). Существует в двух оптически изомерных формах — L и D, а также в виде рацемата.
Шпи́лька (англ. stem-loop, hairpin) — в молекулярной биологии элемент вторичной структуры РНК, а также одноцепочечной ДНК. Шпилька образуется в том случае, когда две последовательности одной и той же цепи комплементарны друг другу и соединяются друг с другом, перегибаясь одна к другой и образуя на конце неспаренный участок — петлю. Такие комплементарные последовательности нередко представляют собой палиндромные последовательности.
Дисульфи́дные мо́стики, или дисульфи́дная связь, — ковалентная связь между двумя атомами серы (—S—S—), входящими в состав серосодержащей аминокислоты цистеина. Образующие дисульфидную связь аминокислоты могут находиться как в одной, так и в разных полипептидных цепях белка. Дисульфидные связи образуются в процессе посттрансляционной модификации белков и служат для поддержания третичной и четвертичной структур белка.
Открытая рамка считывания (англ. Open Reading Frame, ORF) — последовательность нуклеотидов в составе ДНК или РНК, потенциально способная кодировать белок. Основным признаком наличия ORF служит отсутствие стоп-кодонов (в случае РНК — обычно UAA, UGA и UAG) на достаточно длинном участке последовательности после стартового кодона (в подавляющем большинстве случаев — AUG). Поскольку в некоторых случаях стартовый и терминирующие кодоны отличаются от канонических, а также ввиду возможности супрессии (подавления...
Стоп-кодон или кодон терминации — единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК — кодирующая прекращение (терминацию) синтеза полипептидной цепи (трансляцию).