Связанные понятия
В теории узлов хиральный узел — это узел, который не эквивалентен своему зеркальному отражению. Ориентированный узел, эквивалентный своему зеркальному отражению, называется амфихиральным узлом или ахиральным узлом. Хиральность узла является инвариантом узла. Хиральность узлов можно далее классифицировать в зависимости от того, обратим он или нет.
Узел в математике — вложение окружности (одномерной сферы) в трёхмерное евклидово пространство, рассматриваемое с точностью до изотопии. Основной предмет изучения теории узлов. Два узла топологически эквивалентны, если один из них можно продеформировать в другой, причём в процессе деформации не должно возникать самопересечений.
Тривиальный узел (или незаузлённый узел) — частный случай топологического узла, определённый объект математической теории узлов.
В теории узлов
простой узел или простое зацепление — это узел, который, в определённом смысле, неразложим. Точнее, это нетривиальный узел, который нельзя представить в виде конкатенации двух нетривиальных узлов. Об узлах, не являющихся простыми, говорят как о составных узлах или составных зацеплениях. Определить, является ли данный узел простым или нет, может оказаться сложной задачей.
В теории узлов обратимый узел — это узел, который может быть непрерывной деформацией переведён в себя, но с обратной ориентацией. Необратимый узел — это любой узел, который не имеет такого свойства. Обратимость узла является инвариантом узла. Обратимое зацепление — это зацепление с таким же свойством.
Скейн-соотношение (или соотношение типа Конвея) часто используют, чтобы простым способом определить многочлен узла. Неформально говоря, скейн-соотношение задаёт линейную связь значений многочлена узла на трёх зацеплениях, которые отличаются друг от друга лишь в малой области. Для некоторых многочленов, таких как полиномы Конвея, Александера и Джонса, подходящего скейн-соотношения достаточно, чтобы вычислить многочлен рекурсивно. Для других, таких как полином HOMFLY, требуются более сложные алгоритмы...
В математике, поверхность Зейферта — поверхность, границей которой является заданный узел или зацепление. Такие поверхности зачастую бывают полезны при исследовании соответствующего узла или зацепления. В частности, многие инварианты узлов проще всего вычисляются с её помощью. Поверхности Зейферта интересны и сами по себе, как объекты исследования. Названы в честь Герберта Зейферта.
Инвариа́нтом узла́ — характеристика узла (в простейшем число, но может быть многочленом, группой и так далее), определённая для каждого узла и одинаковая для эквивалентных узлов.
Сателлитный узел — конструкция позволяющая построить новый узел из двух узлов с определёнными дополнительными структурами.
В теории узлов
восьмёрка (четырёхкратный узел или узел Листинга) — это единственный узел с числом пересечений четыре. Это наименьшее возможное число пересечений, за исключением тривиального узла и трилистника. Восьмёрка является простым узлом.
Гиперболический объём может быть определён для любого гиперболического 3-многообразия. Многообразие Викса имеет наименьший возможный объём среди замкнутых многообразий (многообразие, в отличие от дополнения зацепления, не имеет каспов) и его объём примерно равен 0,9427.
Решётка (англ. Grid network, иногда также mesh, например 3D-mesh) — понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и соединяет два смежных узла вдоль этой оси. Не следует путать с понятием Грид, обозначающем вычислительную систему.
В теории узлов
мутация — это операция над узлом, которая может привести к другому узлу.
В теории узлов
трилистник — это простейший нетривиальный узел. Трилистник можно получить, соединив 2 свободных конца обычного простого узла, в результате чего получаем заузленное кольцо. Как простейший узел, трилистник является фундаментальным объектом при изучении математической теории узлов, которая имеет многообразные приложения в топологии, геометрии, физике, химии и иллюзионизме.
Многочлен Александера — это инвариант узла, который сопоставляет многочлен с целыми коэффициентами узлу любого типа. Джеймс Александер обнаружил его, первый многочлен узла, в 1923. В 1969 Джон Конвей представил версию этого многочлена, ныне носящую название многочлен Александера — Конвея. Этот многочлен можно вычислить с помощью скейн-соотношения, хотя важность этого не была осознана до открытия полинома Джонса в 1984. Вскоре после доработки Конвеем многочлена Александера стало понятно, что похожее...
Число закрученности инвариантно относительно движений Рейдемейстера II и III типов. Напротив, движение Рейдемейстера I типа увеличивает или уменьшает число закрученности на 1, поэтому оно не является инвариантом изотопии узла — а только функцией от диаграммы.
Группа узла — характеристика узла, определяемая как фундаментальная группа его дополнения.
Ориента́ция , в классическом случае — выбор одного класса систем координат, связанных между собой «положительно» в некотором определённом смысле.
Нотация Конвея — это способ описания узлов, делающий многие свойства узлов очевидными. Нотация показывает строения узла, строя его с помощью некоторых операций над плетениями.
В математической теории узлов, движением (преобразованием) Рейдемейстера называют одно из трёх...
Подробнее: Движение Рейдемейстера
В математике, когерентные пучки — это класс пучков, тесно связанных с геометрическими свойствами пространства-носителя. В определении когерентного пучка используется пучок колец, который хранит эту геометрическую информацию.
Подробнее: Когерентный пучок
В теории узлов число отрезков — это инвариант узла, определяющий наименьшее число прямых «отрезков», которые, соединяя конец к концу, образуют узел. Конкретнее, для любого узла K число отрезков K, обозначается stick(K), — это наименьшее число звеньев ломаной, эквивалентной K.
В теории узлов число мостов — это инвариант узла, определяемый как минимальное число мостов, требуемых для представления узла. При этом мост может быть переброшен не только через одну линию, но и через две, три и более.
Аттрактор Плыкина — пример динамической системы на диске, максимальный аттрактор которой гиперболичен. В частности, этот пример структурно устойчив, как удовлетворяющий аксиоме A Смейла.
Метод узловых потенциалов — метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех рёбрах.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Конфигурация — это разбиение d-мерного линейного, аффинного или проективного пространства на связные открытые ячейки, порождённые конечным набором геометрических объектов. Иногда эти объекты имеют один и тот же тип, такой как гиперплоскости или сферы. Интерес к изучению конфигураций вызван успехами в вычислительной геометрии, где конфигурации были объединяющими структурами для многих задач. Успехи в изучении более сложных объектов, таких как алгебраические поверхности, отвечали нуждам приложений...
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Диакоптика , или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Зацепление Уайтхеда — одно из основных зацеплений в теории узлов. Введено Уайтхедом в 1934 году как часть конструкции многообразия Уайтхеда.
Упругая карта служит для нелинейного сокращения размерности данных. В многомерном пространстве данных располагается поверхность, которая приближает имеющиеся точки данных и при этом является, по возможности, не слишком изогнутой. Данные проецируются на эту поверхность и потом могут отображаться на ней, как на карте. Её можно представлять себе как упругую пластину, погруженную в пространство данных и прикрепленную к точкам данных пружинками. Служит обобщением метода главных компонент (в котором вместо...
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Трёхмерная сфера , или трёхмерная гиперсфера, иногда 3-сфера, — трёхмерный аналог двумерной сферы. Состоит из множества точек, равноудалённых от фиксированной центральной точки в четырёхмерном евклидовом пространстве. Так же, как двумерная сфера, которая образует границу шара в трёх измерениях, 3-сфера имеет три измерения и является границей четырёхмерного шара.
Инвариант конечного типа (или инвариант Васильева) — класс инвариантов узлов, характеризующийся определённым соотношением на все разрешения сингулярного узла с данным числом самопересечений.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Исчисление Кёрби в геометрической топологии, названное именем Робиона Кёрби,— это метод модификации оснащённых зацеплений на трёхмерной сфере с помощью конечного числа движений Кёрби. Используя четырёхмерную теорию Серфа, Кёрби доказал, что если M и N являются трёхмерными многообразиями, полученными хирургией Дена (Хирургия Дена) из оснащённых зацеплений L и J соответственно, то они гомеоморфны тогда и только тогда, когда L и J связаны последовательностью движений Кёрби. Согласно теореме Ликериша...
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.
Подробнее: Кэлеров дифференциал
Обратная решётка — точечная трёхмерная решётка в абстрактном обратном пространстве, где расстояния имеют размерность обратной длины. Понятие обратной решётки удобно для описания дифракции рентгеновских лучей, нейтронов и электронов на кристалле. Обратная решётка (обратное пространство, импульсное пространство) является Фурье-образом прямой кристаллической решётки (прямого пространства).
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Окольцованное пространство — топологическое пространство, каждому открытому множеству которого сопоставлено коммутативное кольцо «функций» на этом множестве. Окольцованные пространства, в частности, используются при определении схем.
Самоподобный объект — объект, в точности или приближённо совпадающий с частью себя самого (то есть целое имеет ту же форму, что и одна или более частей).
Подробнее: Самоподобие
Программирование потоков данных (англ. dataflow programming) — подход к программированию, при котором программа моделируется в виде ориентированного графа потока данных между операциями, подобного диаграмме потока данных. Развивается в программной инженерии с 1970-х годов.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Петля в топологическом пространстве X — это непрерывное отображение f единичного отрезка I = в X, такое что f(0) = f(1). Другими словами, это путь, начальная точка которого совпадает с конечной.
Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.