Связанные понятия
Паска́ль (русское обозначение: Па, международное: Pa) — единица измерения давления (механического напряжения) в Международной системе единиц (СИ).
Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава. Насыщенный водяной пар над водой (льдом) — водяной пар, находящийся в термодинамическом равновесии с плоской поверхностью жидкой воды или льда в чистом виде или в составе влажного газа.
Бар (русское обозначение: бар; международное: bar; от греч. βάρος — тяжесть) — внесистемная единица измерения давления, примерно равная одной атмосфере. Один бар равен 105 Па или 106 дин/см² (в системе СГС).
Перегре́тый пар — пар, нагретый до температуры, превышающей температуру кипения при данном давлении. Перегретый пар используется в циклах различных тепловых машин с целью повышения их КПД. Получение перегретого пара происходит в специальных устройствах — пароперегревателях.
Фунт на квадратный дюйм (обозн. psi или lb.p.sq.in. или lbs), точнее, «фунт-сила на квадратный дюйм» (англ. pound-force per square inch, lbf/in²) — внесистемная единица измерения давления. В основном употребляется в США. Численно равна 6894,75729 Па.
Упоминания в литературе
Атмосферное давление обусловлено огромной массой атмосферы, составляющей приблизительно 5,15 × 1018 кг (на каждого человека приходится около 15 т). Наше нормальное существование обеспечивается благодаря равновесию атмосферного и соматического (свойственного организму) давления. Атмосферное давление измеряется в миллиметрах ртутного столба при помощи специальных приборов – барометров. Среднее давление атмосферы на поверхности Земли на уровне моря соответствует
условно принятому нормальному давлению атмосферы, которое равно 1 атмосфере, или
Он ошибочно связывает пик напряжения поля с совпадающим по времени максимумом концентрации радона – газа, активно участвующего в ионизации воздуха в нижних слоях атмосферы Земли. Истинная же ситуация состоит в том, что повышенная ионизация сама увеличивает проводимость воздуха и сама по себе уменьшает наблюдаемое напряжение атмосферного электрического поля, т. е. все происходит в точности наоборот, не так, как предсказывает Класс. Коротко говоря, разность потенциалов у поверхности Земли и в ионосфере может рассматриваться как постоянная, ее
хорошо известные универсальные суточные изменения можно не принимать во внимание. Отсюда следует, что плотности вертикальных токов в атмосфере будут оставаться постоянными, если не учитывать суточные факторы, которые изменяют только проводимость сравнительно плотных слоев воздуха вблизи поверхности Земли. Однако при постоянстве плотности токов в атмосфере интенсивность ее электрического поля должна самоустанавливаться на уровнях, обратно пропорциональных проводимости воздуха.
Некоторые свойства воды делают ее уникальным инструментом регулирования климата на нашей планете. Например, высокая удельная теплоемкость – энергия, которую необходимо сообщить телу для повышения его температуры на данную величину, поддерживает температуру Земли стабильной. Ведь энергия, требующаяся для нагрева воды, почти в десять раз больше, чем для такой же массы железа, и вся она впоследствии выделяется при остывании. Таким образом, большое количество воды на нашей планете компенсирует резкие скачки температуры в прибрежных районах. С другой стороны, континенты нагреваются и остывают довольно быстро, что и хорошо в комбинации с относительно стабильной температурой водных масс. В результате разные части атмосферы нагреваются по-разному, порождая движение воздушных масс, а это очень важно в глобальной климатической
картине перераспределения тепла и атмосферной влаги.
Анализ данных аэрологических зондирований, выполненных на метеостанции Тикси в 1959–2009 годах, позволил выявить основные закономерности долговременных изменений температуры (до высоты 10 гПа) и удельной влажности воздуха (до высоты 300 гПа).
Обе характеристики свободной атмосферы показали наличие слабого, но положительного тренда в нижней тропосфере, особенно явно выраженного в 2000-е годы. В то же время полученные результаты являются лишь качественным свидетельством наблюдаемого в последние годы потепления нижнего слоя атмосферы и похолодания верхней тропосферы и нижней стратосферы. Это обусловлено относительно небольшой длиной рядов наблюдений, имеющимися пропусками данных и частотой радиозондирований, не превышающей двух радиозондирований в сутки. Значительно больший объем информации как по количеству наблюдаемых параметров, так и по продолжительности, качеству и частоте наблюдений был получен на метеорологической станции Тикси в ходе выполнения стандартных метеорологических наблюдений. Результаты анализа этих наблюдений изложены в следующей части статьи.
Это прекрасно, однако работает только потому, что запас углерода-14 все время возобновляется. Будь иначе, углерод-14 с его коротким периодом полураспада давным-давно исчез бы из атмосферы, так же, как оттуда исчезли другие быстро живущие природные изотопы. Углерод-14 – исключение из правил, поскольку он восстанавливается благодаря космическим лучам, бомбардирующим атомы азота в верхних слоях атмосферы. Азот – самый распространенный в атмосфере газ, массовое число которого – 14 (такое же, как и у углерода-14). Различие состоит в том, что в атоме углерода-14 содержится 6 протонов и 8 нейтронов, тогда как азот-14 имеет 7 протонов и 7 нейтронов (масса нейтронов почти равна массе протонов). Космические частицы способны, ударяя в протон ядра азота, превратить его в нейтрон. Когда это происходит, атом превращается в углерод-14 (углерод в периодической таблице стоит на клетку левее азота). Поскольку частота таких превращений мало изменяется от века к веку, радиоуглеродный метод прекрасно работает. На самом деле эта частота непостоянна, поэтому необходим метод учета и компенсации колебаний. К счастью, мы можем
провести точную калибровку колебаний количества углерода-14 в атмосфере, что позволяет учитывать при датировании изменчивость соотношения углерода-12 и углерода-14. (Вы ведь не забыли, что временной промежуток, доступный для датировки при помощи углерода-14, в значительной мере покрывается дендрохронологией, которая позволяет определять возраст с точностью до года?) Таким образом, сопоставляя результаты, полученные двумя методами – радиоуглеродным и по годичным кольцам, – мы оценим ошибки, возникающие из-за непостоянной концентрации в атмосфере углерода-14. Мы можем пользоваться этой калибровкой при определении возраста органических образцов, для которых нет дендрохронологических данных (их абсолютное большинство).
Связанные понятия (продолжение)
Рабо́чее те́ло — в теплотехнике и термодинамике условное несменяемое материальное тело, расширяющееся при подводе к нему теплоты и сжимающееся при охлаждении и выполняющее работу по перемещению рабочего органа тепловой машины. В теоретических разработках рабочее тело обычно обладает свойствами идеального газа.
Форсунка — механический распылитель жидкости или газа, управляемый электромагнитным клапаном или механически.
Водяной пар — газообразное агрегатное состояние воды. Не имеет цвета, вкуса и запаха. Водяной пар — в чистом виде или в составе влажного газа, — находящийся в термодинамическом равновесии с поверхностью влажного вещества, называют равновесным водяным паром.
Камера сгорания — объём, образованный совокупностью деталей двигателя или печи (в последнем случае камера сгорания называется топкой) в котором происходит сжигание горючей смеси или твёрдого топлива. Конструкция камеры сгорания определяется условиями работы и назначением механизма или печи в целом; как правило используются жаропрочные материалы.
Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества, то есть при температурах ниже критической температуры вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар...
Газовый реду́ктор — устройство для понижения давления газа или газовой смеси на выходе из какой-либо ёмкости (например, в баллоне или газопроводе) до рабочего и для автоматического поддержания этого давления постоянным независимо от изменения давления газа в баллоне или газопроводе.
Сопло ́ — это канал переменного или постоянного поперечного сечения круглой, прямоугольной или иной формы, предназначенный для подачи жидкостей или газов с определённой скоростью и в требуемом направлении. Конструирование сопла основано на расчёте размеров его канала, обеспечивающих заданную выходную скорость жидкости или газа. Принцип действия сопла основан на истечении жидкости или газа за счёт перепада их давлений по длине канала сопла.
Дета́ндер (от франц. détendre — ослаблять) — устройство, преобразующее потенциальную энергию газа в механическую энергию. При этом газ, совершая работу, охлаждается. Используется в цикле получения жидких газов, таких как кислород, водород и гелий. Наиболее распространены поршневые детандеры и турбодетандеры.
Сжатый воздух — воздух, который находится под давлением, превышающим атмосферное.
Килогра́мм-си́ла (русское обозначение: кгс или кГ; международное: kgf или kgF) — единица силы в системе единиц МКГСС; наряду с метром и секундой является основной единицей этой системы. III Генеральная конференция по мерам и весам (1901) дала этой единице следующее определение: «килограмм-сила равен силе, которая сообщает покоящейся массе, равной массе международного прототипа килограмма, ускорение, равное нормальному ускорению свободного падения (9,80665 м/с2)».
Теплообменник — техническое устройство, в котором осуществляется теплообмен между двумя средами, имеющими различные температуры.
Жи́дкий водоро́д (ЖВ, жH2, жH2, LH2, LH2) — жидкое агрегатное состояние водорода, с низкой плотностью − 0,07 г/см³, и криогенными свойствами с точкой замерзания 14,01 K (−259,14 °C) и точкой кипения 20,28 K (−252,87 °C). Является бесцветной жидкостью без запаха, которая при смешивании с воздухом относится к взрывоопасным веществам с диапазоном коэффициента воспламенения 4—75 %. Спиновое соотношение изомеров в жидком водороде составляет: 99,79 % — параводород; 0,21 % — ортоводород. Коэффициент расширения...
Конденса́тор (в теплотехнике) (лат. condenso — уплотняю, сгущаю) — теплообменный аппарат, теплообменник, в котором осуществляется процесс конденсации, процесс фазового перехода теплоносителя из парообразного состояния в жидкое за счёт отвода тепла более холодным теплоносителем.
Тяга — снижение давления воздуха или продуктов сгорания в каналах сооружений и технических систем, способствующее притоку среды в область пониженного давления. Может быть естественной (под действием Архимедовой силы) либо принудительной (под действием технических устройств, обеспечивающих отток газов или воздуха, например, вентиляторов).
Га́зовый балло́н — сосуд под избыточным внутренним давлением для хранения сжатых, сжиженных (превращающихся в жидкость при повышенном давлении) и растворенных под давлением газов.
«Цикл с фазовым переходом» (ЦФП, англ. Expander cycle) — безгенераторная схема работы жидкостного ракетного двигателя (ЖРД), которая предназначена для увеличения эффективности топливного цикла. При схеме ЦФП топливо нагревается до его сжигания, обычно используя ту часть теряемого тепла главной камеры сгорания, которое идет на обогрев стенок камеры, и претерпевает фазовый переход. Полученная за счет превращения топлива в газ разность давления используется для подачи топливных компонентов, сохранения...
Эже́ктор — (фр. éjecteur, от éjecter — выбрасывать от лат. ejicio) — устройство, в котором происходит передача кинетической энергии от одной среды, движущейся с большей скоростью, к другой. Эжектор, работая по закону Бернулли, создаёт в сужающемся сечении пониженное давление одной среды, что вызывает подсос в поток другой среды, которая затем уносится и удаляется от места всасывания энергией первой среды.
Конденса́т (лат. condensatus — уплотнённый, сгущённый) — продукт конденсации парообразного состояния жидкостей, то есть продукт перехода вещества при охлаждении из газообразной в жидкую форму. Другими словами, конденсат — это жидкость, образующаяся при конденсации пара или газа.
Циклон — воздухоочиститель, используемый в промышленности, а также в некоторых моделях пылесосов для очистки газов или жидкостей от взвешенных частиц. Принцип очистки — инерционный (с использованием центробежной силы), а также гравитационный. Циклонные пылеуловители составляют наиболее массовую группу среди всех видов пылеулавливающей аппаратуры и применяются во всех отраслях промышленности.
Сопло́ Лава́ля — газовый канал особого профиля, разгоняющий проходящий по нему газовый поток до сверхзвуковых скоростей. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей.
В этой статье не рассматриваются атомные реакторы и парогенераторы АЭС.Котёл — конструктивно объединенный в одно целое комплекс устройств для передачи некоторому теплоносителю тепловой энергии за счёт сжигания топлива, при протекании технологического процесса или преобразовании электрической энергии в тепловую.
Подробнее: Котёл (техника)
Теплово́й дви́гатель — аппарат, превращающий теплоту в механическую энергию, используя зависимость объёма вещества от температуры. Обычно работа совершается за счет изменения объёма вещества, но иногда используется изменение формы рабочего тела (в твёрдотельных двигателях). Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие разницы температур...
Теплоноситель — жидкое или газообразное вещество, применяемое для передачи тепловой энергии. На практике чаще всего применяют воду (в виде газа или жидкости), глицерин, нефтяные масла, расплавы металлов (Sn, Pb, Na, К), воздух, азот (в том числе жидкий), фреоны (в случае использования фазовых переходов обычно называют хладагентами) и др. Английский термин coolant в большей степени относится к использованию теплоносителя в качестве...
Стехиометри́ческая горю́чая смесь (от др.-греч. στοιχεῖον «основа; элемент» + μετρέω «измеряю») — смесь окислителя и горючего, в которой окислителя ровно столько, сколько необходимо для полного окисления горючего.
Конденса́ция паров (лат. condense «накопляю, уплотняю, сгущаю») — переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация). Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.
Уде́льный и́мпульс — показатель эффективности реактивного двигателя. Иногда для реактивных двигателей используется синоним «удельная тяга» (термин имеет и другие значения), при этом удельная тяга применяется обычно во внутренней баллистике, в то время как удельный импульс — во внешней баллистике. Размерность удельного импульса если известна масса (в кг) есть размерность скорости, в системе единиц СИ это метр в секунду. Если же вместо массы известен вес (в Ньютонах) то размерностью удельного импульса...
Сосуд под давлением — закрытая ёмкость (стационарно установленная или передвижная), предназначенная для ведения химических, тепловых и других технологических процессов, а также для хранения и транспортировки газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцеры.
Экономайзер (англ. Economizer, от английского слова economize — «сберегать») — элемент котлоагрегата, теплообменник, в котором питательная вода перед подачей в котёл подогревается уходящими из котла газами. При давлении до 22 кгс/см² (2,2 МПа) и температуре питательной воды ниже точки росы дымовых газов или недеаэрированной воде экономайзер изготовляют из гладких или ребристых чугунных труб, на более высокие давление и температуру — из стальных, преимущественно гладких, труб. Устройство повышает...
Кла́пан — устройство, предназначенное для открытия, закрытия или регулирования потока при наступлении определённых условий (повышении давления в сосуде, изменении направления тока среды в трубопроводе). Поток (ток) может быть потоком жидкости (вода, кровь, жидкие металлы и др.), газа (воздух, азот, углекислый газ и др.), электронов или других частиц в трубе, проводнике, полупроводнике, вакууме или другой среде.
Компенсатор давления — технический сосуд под давлением со специальной конструкцией, обеспечивающей компенсацию изменения объёма воды в замкнутом контуре при её нагревании. Он является конструктивной особенностью двухконтурных реакторов с водой под давлением в качестве теплоносителя (в том числе тяжёловодных), использующихся на атомных станциях, атомных подводных лодках и судах и рассматривается обычно в составе технологической системы, которая обеспечивает поддержание давления в первом контуре в...
Кипе́ние — процесс интенсивного парообразования, который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз, то есть на стенках сосуда образуются пузырьки, которые содержат воздух и насыщенный пар. Кипение, как и испарение, является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении. Температура, при которой происходит кипение жидкости...
Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере на единицу площади поверхности по нормали к ней. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени. Давление — величина скалярная...
Па́трубок — небольшой отрезок трубы, присоединённый (вальцованный, приклёпанный, приваренный) к резервуару и др. конструкциям, служащий для подключения к ним трубопроводов и арматуры в целях отвода по нему газа, пара или жидкости. В зависимости от принятого вида соединения свободный конец патрубка снабжают фланцем, резьбой или раструбом. Патрубок называется переходным, когда он имеет неодинаковые по размеру и форме концы. Патрубок — также соединяет трубопроводы, служащие для транспортировки рабочих...
Теплоноси́тель в ядерном реакторе — жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер.
Цикл Ре́нкина — термодинамический цикл преобразования тепла в работу с помощью двухфазного рабочего тела (воды, ртути, фреона и т. д.), включающий испарение и конденсацию.
Паросепара́тор (сепаратор пара, паросушитель) — устройство для отделения капельной влаги от водяного пара (паросушения). Пар, не содержащий влаги, называют сухим, содержащий влагу — влажным или перенасыщенным.
Пло́тность во́здуха — масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Плотность воздуха является функцией от давления, температуры и влажности. Обычно, стандартной величиной плотности воздуха на уровне моря в соответствии с Международной стандартной атмосферой принимается значение 1,2250 кг/м³, которая соответствует плотности сухого воздуха при 15 °С и давлении 101330 Па.
Во́здух — смесь газов (главным образом азота и кислорода — 98—99 % в сумме и зависит от влажности (концентрации водяного пара), а также аргона, углекислого газа, водорода), образующая земную атмосферу. Воздух необходим для нормального существования на Земле живых организмов. Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы). В промышленности...
Нагрев — искусственный либо естественный процесс повышения температуры материала/тела, либо за счёт внутренней энергии, либо за счёт подведения к нему энергии извне. Для подведения энергии извне используется специальное устройство — нагреватель (нагревательный элемент), того или иного вида и конструкции.
Теплота́ сгора́ния — количество выделившейся теплоты при полном сгорании массовой (для твердых и жидких веществ) или объёмной (для газообразных) единицы вещества. Измеряется в джоулях или калориях. Теплота сгорания, отнесённая к единице массы или объёма топлива, называется удельной теплотой сгорания. В системе СИ: Дж/кг. Также довольно часто используются внесистемные единицы измерения: кДж/кг, МДж/кг и ккал/кг.
Котёл верхнего горения — разновидность твердотопливного слоевого котла, в котором подача воздуха и процесс горения ограничиваются верхней частью топливного слоя. Такая схема позволяет загружать в топку единовременно значительное количество топлива, соответственно, котлы характеризуют как котлы длительного горения и требуют более редкого обслуживания.
Дросселирование (от нем. drosseln — ограничивать, глушить) — понижение давления газа или пара при протекании через сужение проходного канала трубопровода — дроссель, либо через пористую перегородку.
Турбонасосный агрегат (сокращённо — ТНА) — агрегат системы подачи жидких компонентов ракетного топлива или рабочего тела в жидкостном ракетном двигателе или жидкого топлива в некоторых авиационных двигателях (например, в прямоточном воздушно-реактивном двигателе).Турбонасосный агрегат состоит из одного или нескольких насосов, приводимых от газовой турбины (парогазовой). Рабочее тело турбины обычно образуется в газогенераторах или парогазогенераторах. Жидкостные ракетные двигатели с турбонасосным...
Центробе́жный насо́с — один из двух типов динамических лопастных насосов, перемещение рабочего тела в котором происходит непрерывным потоком за счёт взаимодействия этого потока с подвижными вращающимися лопастями ротора и неподвижными лопастями корпуса. При этом переносное движение рабочего тела происходит за счёт центробежной силы и протекает в радиальном направлении, то есть перпендикулярно оси вращения ротора.
Пневмодвигатель (от греч. pnéuma — дуновение, воздух), пневматический двигатель, пневмомотор — энергосиловая машина, преобразующая энергию сжатого воздуха в механическую работу.
Подробнее: Пневматический двигатель
Упоминания в литературе (продолжение)
Надо заметить, что теплозадерживающая функция атмосферы, в свою очередь, регулируется обменом воды с океанами и морями, а частью также – углекислоты с биосферой. Дело в том, что главные составные части воздуха – кислород и азот – обладают весьма малой задерживающей способностью, а водяной пар, которого в воздухе сравнительно очень немного, несколько десятых процента, и углекислота, которой еще меньше, превосходят их в этом отношении в 16.000 раз. Таким образом регулирование их количества конъюгационными связями между
тремя областями есть основное условие, благодаря которому сохраняется устойчивый, в среднем, температурный их уровень; типичное дополнительное соотношение.
Говоря о погоде, мы имеем в виду характерные времена порядка нескольких Дней. И для ее изучения важнее всего структура
атмосферной циркуляции – распределение фронтов, характер циклонов и т. д. На фоне этой «организации» погоды мы изучаем ее видимые детали: где и когда выпадут осадки; каков будет суточный ход температуры; чему будет равна максимальная скорость порывов ветра и т. д. Если же речь идет об анализе долговременного климатического процесса, о его зависимости от астрономических факторов, например, то динамика отдельных циклонов отступает на второй план. Зато появятся новые характеристики: особенности динамики океанических масс, структуры энергообмена «океан – атмосфера», изменение альбедо и ряд других, которые в «чисто погодных» исследованиях считаются Постоянными. Таким образом, наши рассуждения общего характера приводят в конце концов к вполне конкретным методическим рекомендациям в анализе процессов самоорганизации.
Главная причина глобальных изменений климата – в колебаниях солнечной активности.
Существует несколько периодов подобных колебаний – это отрезки времени в 11, 100 и 2500 лет. Описанный выше малый ледниковый период пришелся на время уменьшения количества пятен и вспышек на Солнце[1], а его самые низкие температурные показатели – на годы упомянутого Маундеровского минимума (1645-1715). После этого глобальная температура лишь повышалась. Данный процесс не связан с промышленной и прочей загрязняющей атмосферу деятельностью человека. Его причина – в количестве энергии, излучаемой нашим светилом.
Сейчас будет полезно обратиться к геологической истории Земли. Считается установленным, что во времена зарождения жизни (около 3,8–4,2 миллиарда лет назад) температура на поверхности планеты составляла около 70 град. по Цельсию. Вероятно, именно поэтому даже одноклеточная жизнь с трудом переносит большие температуры. Несомненно, в то время планета была покрыта постоянной облачностью из-за
высокого, при такой температуре, давления паров воды (а значит планета обладала большим альбедо). Атмосфера состояла в основном из газов, вызывающих парниковый эффект. В результате, даже при меньшей, чем сейчас на 30% светимости Солнца температура у поверхности была (по нашим меркам) очень большой. Конечно, в то время тепловой поток от недр планеты к ее поверхности тоже был больше. Планета тогда была моложе, радиоактивных элементов было больше и энергии распада тоже выделялось больше, кора планеты была тоньше, поток приливной энергии от более близкой Луны тоже был выше. Однако нет никаких оснований полагать, что поток тепла от недр определял климат на планете, имей она прозрачную для тепловых лучей атмосферу. Эти соображения позволяют говорить о решающем для биосферы планеты влиянии на ее температурный режим количества парниковых газов в атмосфере во все времена. Если сейчас попытаться вернуть атмосферу к древнему составу, то, при возросшей светимости Солнца, Земля перейдет в состояние теплового режима близкого к венерианскому, т. к. все океаны испарятся, а водяной пар (как один из самых эффективных парниковых газов) усилит эффект перегрева.
В этом случае формула написана в общем виде для любой планеты с атмосферой [9]. Я не упомянул в формуле изобретения вращение планеты вокруг звезды, годовое смещение ее оси и вращение звезды в составе галактики, так как, по моему разумению, это не сильно повлияет на образование циклонов. В описании изобретения нужно будет сказать о конкретном расположении источника излучения относительно экватора, о закрученности циклонов в Северном и Южном полушариях, о спиралевидной форме вихря, о
вполне определенных давлениях в центре циклона и на периферии, о влиянии пассатов, о скоростях движения воздушных масс и, в конце концов, о высоте волн в центре и по краям циклона. Вся эта дополнительная информация может помочь в том случае, если эксперты «убьют» все признаки формулы изобретения. По закону в процессе экспертизы изобретатель имеет право дополнять первичную формулу изобретения признаками, приведенными в описании. Конечно, читателю придется писать формулы изобретений, придуманных человеком. Но они не будут сильно отличаться от предложенных вариантов. Я же их привел для того, чтобы образно и доходчиво рассказать, как готовятся формулы изобретений. Возможно, это уменьшит страх многих разработчиков перед составлением заявок на свои изобретения и, соответственно, сократит наше отставание в области защиты интеллектуальной собственности.
Каждый из
двух методов измерения ТПО имеет свои недостатки. Для инфракрасного излучения непреодолимой преградой является облачность любого типа, что не позволяет получать данные о ТПО в районах закрытых облаками. Также определенную негативную роль играет наличие в атмосфере различных аэрозолей, газов, водяного пара и состояние водной поверхности.
ГЕЛИОЭНЕРГ?ТИКА, отрасль энергетики, в которой для получения электрической и тепловой энергии используется лучистая энергия Солнца. Энергия солнечного излучения относится к возобновляемым природным видам энергии наряду с гидравлической и геотермальной; её
общее количество, получаемое поверхностью Земли за год, составляет ок. 1018 кВт·ч, что более чем в 20 000 раз превышает современный уровень мирового энергопотребления. Наиболее целесообразно и перспективно использование энергии Солнца для энергоснабжения потребителей, находящихся в южных труднодоступных, удалённых районах, не нуждающихся в больших мощностях (для водоснабжения пресной водой, получения бытового тепла и т. п.), а также в космосе. Лучистая энергия Солнца используется человечеством с древних времён (напр., сушка пищевых продуктов). Со временем был разработан ряд устройств для нагрева воды, обогрева теплиц и т. п. Затем появились различные установки для отопления и охлаждения зданий, опреснения солёной воды, энергообеспечения устройств систем связи, ирригации, космических аппаратов и т. д. К 2000 г. доля используемой солнечной энергии в общем объёме энергопотребления составила 2–3 %. Исследования в области использования солнечной энергии ведутся во многих странах мира, особенно в регионах с интенсивным солнечным излучением – в странах Средиземноморья, юга Европы, на Ближнем Востоке, в Африке, странах Средней Азии и др. Разработки проводятся на уровне национальных программ, что связано во многом с постепенным истощением традиционных источников энергии и повышением цен на органическое топливо. Строительство гелиоустановок обычно рассматривается как дополнение к традиционным источникам энергии. Недостатком всех гелиоустановок является зависимость их работы от состояния атмосферы, а также от сезонных и суточных колебаний солнечной радиации, что требует включения в их состав аккумулирующих устройств.
Впрочем, как я уже говорил вам, у меня есть некоторое количество балласта, который в случае экстренной надобности может дать возможность подняться еще скорее. Клапан, находящийся на верхнем полюсе шара, является только предохраийтельным клапаном. Воздушный шар неизменно содержит одно и то же количество водорода. Подъем и снижение, повторяю, происходит только благодаря изменению его температуры. А теперь, господа, я хочу сообщить вам еще одну подробность: при сгорании водорода и кислорода на конце горелки получаются водяные пары; поэтому я снабдил нижнюю часть цилиндрического ящика трубкой с клапаном, действующим
при давлении в две атмосферы; следовательно, когда пар достигает такого давления, он сам автоматически выходит наружу.
В ходе выполнения проекта организованы регулярные измерения малых газовых примесей, обусловливающих парниковый эффект (СО2, СН4, СО) и разрушение озонового слоя (N2O, SF6). Кроме того, выполнение проекта позволит на основе данных измерений концентраций изотопов углерода 13С и кислорода 18О получить качественные
характеристики изменений общей циркуляции атмосферы.
Погодные условия могут оказывать негативное влияние на самочувствие человека или вызывать чувства комфорта. Погодой называется состояние атмосферы в данном месте в определенный момент или за ограниченный промежуток времени (сутки, месяц). Погода обусловлена физическими процессами, происходящими при взаимодействии атмосферы с космосом и земной поверхностью. Погоду
характеризуют метеорологические показатели: атмосферное давление, температура и влажность воздуха, скорость и направление ветра.
Большое
значение имеет исследование химического состава звезд путем тщательного анализа их спектров. При этом необходимо учитывать температуру и давление в поверхностных слоях звезд, которые также получают из спектров. Вообще спектрографические наблюдения дают наиболее полную информацию об условиях, господствующих в звездных атмосферах.
При образовании планет компоненты атмосферы могли попасть на них тремя путями. Во-первых, планета могла притянуть к себе какое-то количество газа из газового диска, пока он еще не рассеялся – в первые 10 млн лет существования Солнечной системы. Во-вторых, инертные газы, вода и азот в заметных количествах содержатся в хондритных метеоритах – остатках планетезималей, основных строительных блоках планет. В-третьих, как при образовании планет, так и в эпоху поздней тяжелой бомбардировки на них попало какое-то количество ледяных комет из внешних областей Солнечной системы. Помимо смешивания газов из этих трех источников на состав атмосферы повлияли химические реакции, связавшие какую-то (возможно, бóльшую) часть водорода и азота в недрах Земли. Однако изотопный состав
газов и соотношение количества разных инертных газов (не затронутое химией) помогут нам раскрыть происхождение атмосферы. Метеориты доступны нам для прямого изучения на Земле, а к кометам летали космические зонды. Но газ протопланетного диска давно рассеялся. Ближе всего к нему по составу, видимо, Солнце, но прямое его изучение невозможно, а с помощью дистанционных спектроскопических методов можно измерить не все элементы и изотопы. Также хорошим приближением является атмосфера Юпитера, которую анализировал в 1995 году спускаемый аппарат зонда «Галилео». Эти измерения показывают, что в метеоритах выше доля тяжелых изотопов всех инертных газов по сравнению с протопланетным диском.
Люди не испытывают воздействия давления, которое за бортом
сейчас равно 500 атмосферам. Только на центральный иллюминатор на этой глубине воздействует сила более 160 тонн, что соответствует весу четырех тяжелых танков. А ведь иллюминатор сделан из акрилового стекла и имеет внутренний диаметр 200 миллиметров. Но люди в безопасности, ибо и обитаемая сфера, и другие конструктивные элементы рассчитаны и испытаны со значительным превышением максимальной рабочей глубины аппарата. Люди даже забыли, где они находятся: они всецело поглощены происходящим за иллюминаторами. Они как будто слились с природой…
Таким образом, давление окружающей среды, т. е. абсолютное
давление, представляет собой сумму атмосферного давления на уровне моря и гидростатического давления, которое изменяется на 1 атмосферу каждые 10 м глубины.
Из-за нехватки фундаментальных знаний вопрос о воздействии солнечной активности на климат оставался вне сферы внимания и климатологов, и астрофизиков практически до начала 1980-х. Возможно, первая попытка связать два события – минимум Маундера и Малый ледниковый период – была сделана Д. Эдди [181]. Многие исследования весьма убедительно подтверждают связь солнечной активности и климата – более тёплые периоды соответствуют более активному Солнцу. Во многих естественных архивах температурные и «космические» сигналы на удивление хорошо совпадают. В качестве наиболее показательных примеров можно привести изменения толщины ежегодных слоёв озёрных донных отложений в Финляндии [190], размеров Большого Алечского ледника в Швейцарских Альпах [158], содержания тяжёлого кислорода 18O в сталагмите из пещеры в Омане [280]. Минимумы Солнца совпадают с температурными аномалиями в пределах последних сотен и тысяч лет, таким образом, влияние солнечной активности на климат можно считать весьма вероятным. Но механизм этого влияния пока не ясен[29]. Десять лет назад в журнале Nature [284] была опубликована реконструкция солнечной активности за 11400 лет. Авторы обнаружили, что в последние 70 лет наблюдается аномальное число пятен на Солнце; в прошлый раз такая активность наблюдалась около 8000 лет назад. Возможно, этот фактор вносит значительный вклад в нынешнее потепление. Другим безусловным фактором является рост содержания углекислого газа в атмосфере, поглощающего инфракрасное излучение Земли (парниковый
эффект). Сейчас его содержание достигло 400 ppm (частей на миллион), что значительно выше, чем в течение, по крайней мере, полумиллиона лет[30].
Колебания поверхностных слоев измеряются по доплеровскому сдвигу при наблюдениях в спектральных линиях. Впервые это было обнаружено в начале 1960-х гг. Лейтоном и его соавторами (Robert Leighton, Robert Noyers, George Simon). Эти ученые открыли пятиминутные колебания Солнца (названы по продолжительности их
периода) с амплитудой скорости несколько сотен метров в секунду и пространственными масштабами порядка тысяч километров. Это самые заметные вертикальные колебания атмосферы Солнца.
Метанобразующие археи вполне могли поддержать концентрацию метана в атмосфере, достаточную для создания парникового эффекта, – на уровне 0,1 % (ныне < 0,0002 %) или его смесь с СО2. Поскольку в отсутствие главного окислителя – кислорода – продолжительность существования молекул метана могла быть на три порядка больше, чем нынешний 10-летний срок, по достижении соотношения СН4/СО2, близкого к 1, молекулы метана полимеризовались до этана (С2Н6). И легкая дымка превратилась в туман, в котором содержание метана могло в 600 раз превышать современный
уровень. (Похожая по составу атмосфера с метановыми облаками и дождями существует на Титане, спутнике Сатурна.) При определенной размерности частиц и наличии в нем паров воды туман мог оставаться проницаемым и не препятствовал нагреву поверхности Земли. Под защитой метано-этанового тумана могла повыситься и концентрация NН3, OСS и серных соединений, включая аэрозоли полиатомной серы (S8).
Немногим лучше обстоят дела и с газовыми или эксимерными лазерами, в которых активной средой являются нестабильные соединения благородных (инертных) газов, находящихся в возбужденном состоянии. Такие лазеры генерируют излучение меньшей длины волны, которое несколько слабее, чем у химических, и поглощается атмосферой.
Однако низкий коэффициент полезного действия такого лазера требует еще больших затрат энергии, а значит, сама установка имеет большие габариты и вес.
Эффективность деятельности человека зависит от организации рабочего места; правильного расположения и компоновки рабочего места; обеспечения удобной позы и свободы движений; использования оборудования, отвечающего требованиям эргономики. Микроклимат производственных помещений характеризуется большим разнообразием сочетаний температуры, влажности, скорости
движения воздуха, интенсивности и состава лучистого тепла, отличается динамичностью и зависит от колебаний внешних метеоусловий, времени года и дня, хода и характера производственного процесса, условий воздухообмена с атмосферой. Так при дискомфортном микроклимате наблюдается напряжение процессов терморегуляции. При выполнении физической работы границы терморегуляции снижаются.
По оценкам Всемирной организации здравоохранения, наличие в атмосфере загрязняющих веществ стало причиной смерти в России более чем 52 тыс. человек в 2004 г., а в 2008 г. – почти 70 тыс. человек. При этом очевидна связь данных показателей с динамикой
изменения количества автомобилей в Российской Федерации. Если в середине 90-х гг. на 1000 чел. в стране приходилось около 92 автомобилей, то к 2005 г. данный показатель вырос почти в 2 раза (159)[4], а в настоящее время его значение вообще составляет более 250 автомобилей[5]. При этом почти три четверти автомобилей в России соответствуют низким экологическим стандартам[6].
Сегодня предлагается целый ряд специализированных программ для профессиональной деятельности в области охраны окружающей среды, реализующих элементы технологии ГИС. Они могут предназначаться для оценки загрязнений и их последствий и привязки результатов к конкретной местности. Основой таких программ является математическая модель процесса
(например, метод расчета загрязнения атмосферы, базирующийся на гидродинамической модели пограничных слоев атмосферы и методе Монте-Карло для оценки турбулентной диффузии примесей, на основе суперпозиции полей загрязнений возможен расчет суммарного загрязнения и риска токсических эффектов и т. п.). На основе данных об источнике загрязнения (геопространственная привязка, объем, скорость выброса и др.), климатических характеристик можно рассчитать поле загрязнения, и результаты будут визуализироваться с учетом пространственных данных. Применение стандартизованного метода расчета позволяет использовать полученные результаты для принятия управленческих решений.
В распространении радиоволн всех диапазонов (за исключением очень коротких, длиной λ < 10 м) важную роль играет ионосфера. Это верхние сильно разряженные слои атмосферы, находящиеся на высоте свыше 100 км над поверхностью Земли и в значительной степени ионизированные под действием солнечного и космического излучения. Особенности распространения радиоволн в
ионосфере практически полностью определяются концентрацией в ней свободных электронов, подвижность которых на несколько порядков выше подвижности ионов Концентрация электронов в ионосфере зависит не только от высоты над поверхностью Земли, но также от времени года, времени суток, солнечной активности; кроме того, она подвержена быстрым изменениям случайного характера.
Метод применяется для обучения студентов в США профессором Дж. Арнольдом. Предлагается решать любые обычные технические задачи в условиях воображаемой
планеты со своеобразными условиями: температура на ее поверхности колеблется от – 43 до – 151°C, атмосфера состоит из метана, моря – из аммиака, сила тяжести в 10 раз больше земной. На планете живут разумные существа – метаниане, у них руки с тремя пальцами. У метаниан замедленные реакции. Необходимо последовательно разработать метанианскую технику: дома, средства транспорта, инструменты и т. д. Нужно преодолеть немало психологических барьеров, чтобы придумать, например, автомобиль или электродрель для этих условий. Регулярное решение подобных задач помогает развивать воображение.
Угол наклона земной оси тоже оптимален и составляет 23,5 градуса относительно перпендикуляра к плоскости орбиты. Благодаря углу наклона земной оси обеспечиваются хорошие климатические условия на большей части поверхности планеты. Оптимальными оказались и размеры, и масса нашей планеты. Диаметр составляет 12,5 тысяч км, а масса = 5,97 × 1024 кг. Если бы эти показатели были меньше, то у Земли не
было бы атмосферы (как, например, ее нет у Луны). Если показатели были бы больше, то в атмосфере сохранились бы ядовитые газы (метан, аммиак, водород).
Геологические исследования свойств разреза горных пород доказывают, что северный и южный полюса планеты много раз менялись местами. Это явление называется инверсией магнитного поля. Только за последний период геологического времени продолжительностью в одиннадцать миллионов лет такая смена происходила не менее девяти раз. Установка нынешнего положения произошла, как предполагают, приблизительно 500–800 тысяч лет
назад. Считается, что изменение полярности полюсов происходит каждые пятьсот тысяч лет. Значит, это событие может повториться буквально через какую-нибудь тысячу лет. По космическим меркам, это совсем маленький срок. Сам же процесс переворота продолжается несколько тысяч лет. В это время солнечная радиация почти свободно проникает в атмосферу, ведь защитные экраны снимаются, потому что напряженность магнитного поля падает в три раза. Только ультрафиолетовое излучение задерживается озоновым слоем атмосферы. Нельзя исключить того, что инверсия магнитного поля может стать причиной страшной природной катастрофы, грозящей гибелью всего живого на Земле. В то же время сейчас достоверно известно, что магнитное поле Земли уже неоднократно претерпевало подобные изменения, а жизнь продолжает существовать, хотя, возможно в несколько ином виде. Огромный скачок интенсивности космического излучения мог вполне привести к возникновению скрытых генетических изменений и большому росту числа мутаций в органическом мире. Может быть, и человек – плод такого рода мутаций.
При всем том огромном влиянии на биосферу, процессов, происходящих на Солнце, нельзя не остановиться на роли гравитации ― определяющей силы в космосе. Образование гравитационных полей на планете Земля в основном связано с воздействием Луны (несмотря на то, что масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле). Под действием притяжения Луны твердая поверхность Земли деформируется, растягиваясь по направлению к Луне на величину около 50 см в вертикальном направлении и около 5 см в горизонтальном, что приводит к изменению состояния кристаллических решеток из которых состоит земная кора. В результате деформации в кристаллических решетках образуется упругое напряжение, которое тесно взаимодействует с электрическими и магнитными полями. В
свою очередь, уровень возмущенности магнитного поля определяет скорость протекания биохимических процессов [18]. Кроме того, возмущающее гравитационное воздействие сказывается на водной оболочке Земли, вызывая через каждые 12 ч 25 мин. приливы и отливы, а также на состоянии атмосферы, что выражается в изменении давления, температуры и влажности воздуха, скорости и направления ветра и т. д. [7].
Для городских условий загрязненные почвы рассматривают прежде всего как источник вторичного загрязнения атмосферного воздуха. На основе сопряженных геохимических и гигиенических исследований
установлена возможность использования уровня химического загрязнения почв как индикатора неблагополучного состояния атмосферы и оценки степени опасности загрязнения территории для здоровья населения. Исходной величиной для оценки уровня загрязнения почв в этом случае является значение фоновой концентрации рассматриваемого вещества в почвах региона. Обычно такие подходы используют при анализе загрязнения территории тяжелыми металлами и другими токсичными элементами.