Биекция
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют также взаимно однозначным отображением (соответствием), одно-однозначным отображением или изоморфным соответствием.
Если между двумя множествами можно установить взаимно однозначное соответствие (биекцию), то такие множества называются равномощными. С точки зрения теории множеств , равномощные множества неразличимы.
Взаимно однозначное отображение конечного множества в себя называется перестановкой (или подстановкой) элементов этого множества.
Формально, функция
f
:
X
→
Y
{\displaystyle f\colon X\to Y}
называется биекцией (и обозначается
f
:
X
↔
Y
{\displaystyle f\colon X\leftrightarrow Y}
), если она:
переводит разные элементы множества
X
{\displaystyle X}
в разные элементы множества
Y
{\displaystyle Y}
(инъективность):
∀
x
1
∈
X
,
∀
x
2
∈
X
x
1
≠
x
2
⇒
f
(
x
1
)
≠
f
(
x
2
)
{\displaystyle \forall x_{1}\in X,\;\forall x_{2}\in X\;x_{1}\neq x_{2}\Rightarrow f(x_{1})\neq f(x_{2})}
.
любой элемент из
Y
{\displaystyle Y}
имеет свой прообраз (сюръективность):
∀
y
∈
Y
,
∃
x
∈
X
f
(
x
)
=
y
{\displaystyle \forall y\in Y,\;\exists x\in X\;f(x)=y}
.Примеры:
Тождественное отображение
i
d
:
X
→
X
{\displaystyle \mathrm {id} \colon X\to X}
на множестве
X
{\displaystyle X}
биективно.
f
(
x
)
=
x
,
f
(
x
)
=
x
3
{\displaystyle f(x)=x,\;f(x)=x^{3}}
— биективные функции из
R
{\displaystyle \mathbb {R} }
в себя; вообще, любой моном одной переменной нечетной степени является биекцией из
R
{\displaystyle \mathbb {R} }
в себя.
f
(
x
)
=
e
x
{\displaystyle f(x)=e^{x}}
— биективная функция из
R
{\displaystyle \mathbb {R} }
в
R
+
=
(
0
,
+
∞
)
{\displaystyle \mathbb {R} _{+}=(0,\;+\infty )}
.
f
(
x
)
=
sin
x
{\displaystyle f(x)=\sin x}
не является биективной функцией, если считать её определённой на всём
R
{\displaystyle \mathbb {R} }
.
Строго монотонная и непрерывная функция
f
(
x
)
{\displaystyle f(x)}
является биекцией из отрезка
[
a
,
b
]
{\displaystyle [a,b]}
на отрезок
[
f
(
a
)
,
f
(
b
)
]
{\displaystyle [f(a),f(b)]}
.
Функция
f
:
X
→
Y
{\displaystyle f\colon X\to Y}
является биективной тогда и только тогда, когда существует обратная функция
f
−
1
:
Y
→
X
{\displaystyle f^{-1}\colon Y\to X}
такая, что:
∀
x
∈
X
f
−
1
(
f
(
x
)
)
=
x
{\displaystyle \forall x\in X\;f^{-1}(f(x))=x}
и
∀
y
∈
Y
f
(
f
−
1
(
y
)
)
=
y
.
{\displaystyle \forall y\in Y\;f(f^{-1}(y))=y.}
Если функции
f
{\displaystyle f}
и
g
{\displaystyle g}
биективны, то и композиция функций
g
∘
f
{\displaystyle g\circ f}
биективна, в этом случае
(
g
∘
f
)
−
1
=
f
−
1
∘
g
−
1
{\displaystyle (g\circ f)^{-1}=f^{-1}\circ g^{-1}}
, то есть, композиция биекций является биекцией. Обратное в общем случае неверно: если
g
∘
f
{\displaystyle g\circ f}
биективна, то можно утверждать лишь, что
f
{\displaystyle f}
инъективна, а
g
{\displaystyle g}
сюръективна.
Источник: Википедия
Связанные понятия
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Нейтра́льный элеме́нт бинарной операции — элемент, который оставляет любой другой элемент неизменным при применении этой бинарной операции к этим двум элементам.
Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле...
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. При линейной зависимости существует нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. При отсутствии такой комбинации, то есть, когда коэффициенты единственной такой линейной комбинации равны нулю, множество называется линейно независимым.
Действие группы на некотором множестве объектов позволяет изучать симметрии этих объектов с помощью аппарата теории групп.
Инволюция (от лат. involutio — свёртывание, завиток) — преобразование, которое является обратным самому себе.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Метри́ческим простра́нством называется непустое множество, в котором между любой парой элементов, обладающих определенными свойствами, определено расстояние, называемое ме́трикой.
Подробнее: Метрическое пространство
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.
Свобо́дный мо́дуль — модуль F над кольцом R (как правило, считаемым ассоциативным c единичным элементом), если он либо является нулевым, либо обладает базисом, то есть непустой системой S элементов e1,…ei…, которая является линейно независимой и порождает F. Само кольцо R, рассматриваемое как левый модуль над собой, очевидно обладает базисом, состоящим из одного единичного элемента кольца, а каждый модуль с конечным базисом из n элементов изоморфен прямой сумме Rn колец R, рассматриваемых как модули...
Норма́льная подгру́ппа (также инвариа́нтная подгру́ппа или нормальный делитель) — подгруппа особого типа, левый и правый смежные классы по которой совпадают.
Откры́тое мно́жество — это множество, каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
«Тогда́ и то́лько тогда ́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Алгебра над кольцом — алгебраическая система, которая является одновременно модулем над этим кольцом и кольцом сама по себе, причём эти две структуры взаимосвязаны. Понятие алгебры над кольцом является обобщением понятия алгебры над полем, аналогично тому как понятие модуля обобщает понятие векторного пространства.
Гру́ппа Галуа ́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Коммутативное кольцо — кольцо, в котором операция умножения коммутативна (обычно также подразумевается её ассоциативность и существование единицы). Изучением свойств коммутативных колец занимается коммутативная алгебра.
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Едини́чная ма́трица — квадратная матрица, элементы главной диагонали которой равны единице поля, а остальные равны нулю.
Целые
числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1.
Двойственность в теории категорий — соотношение между свойствами категории C и так называемыми двойственными свойствами двойственной категории Cop. Взяв утверждение, касающееся категории C и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории Cop. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Окре́стность точки — множество, содержащее данную точку, и близкие (в каком-либо смысле) к ней. В разных разделах математики это понятие определяется по-разному.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу этого же пространства).
Во многих областях математики полезную конструкцию часто можно рассматривать как «наиболее эффективное решение» определенной проблемы. Определение универсального свойства использует язык теории категорий, чтобы сделать это определение точным и изучать его теоретическими методами.
Подробнее: Универсальное свойство