Связанные понятия
Гармоническая волна — волна, при которой каждая точка колеблющейся среды или поле в каждой точке пространства совершает гармонические колебания.
Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил её (см. ниже). Уравнение, представляющее собой содержание теоремы в этом обобщённом виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей — то есть в принципе в магнитостатике — верна теорема в первоначальном виде, сформулированном...
Физика колебаний и волн — раздел общей физики, изучающий физические явления, характеризующиеся циклическим изменением физических величин во времени и в пространстве. Это — одна большая часть школьного курса физики, изучается после электромагнетизма ( рассматривая механические и электромагнитные процессы вместе ) или сразу с механикой ( в связи с тем, что теория колебаний и волн развивается на основе кинематики и динамики, что охватывает механика ).
Параметры Стокса — это набор величин, описывающих вектор поляризации электромагнитных волн, введенный в физику Дж. Стоксом в 1852 году. Параметры Стокса являют собой альтернативу описанию некогерентного или частично поляризованного излучения в терминах полной интенсивности, степени поляризации и формы эллипса поляризации.
Упоминания в литературе
Рис. 27. Соединение фаз приемника треугольником и
векторные диаграммы в случае симметричной нагрузки
Связанные понятия (продолжение)
Главным образом, интерес к вопросу распространения волн в случайно-неоднородных средах (какой является, например, атмосфера) можно объяснить бурным развитием спутниковых технологий. В этом случае становится важной задача расчета характеристик (например, амплитуды) волны прошедшей через среду и установления их связей с параметром неоднородности среды. Важную роль здесь и играет функция Грина для случайно-неоднородной среды, зная которую можно определить эти характеристики. Рассматривается прохождение...
Подробнее: Функция Грина для случайно-неоднородной среды
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
Компле́ксная амплитуда — комплексная величина, модуль и аргумент которой равны соответственно амплитуде и начальной фазе гармонического сигнала.
Пра́вило буравчика (пра́вило винта́) — варианты мнемонического правила для определения направления векторного произведения и тесно связанного с этим выбора правого базиса в трёхмерном пространстве, соглашения о положительной ориентации базиса в нём, и соответственно — знака любого аксиального вектора, определяемого через ориентацию базиса.
Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Используется для изучения процессов управления техническими системами, для цифровой обработки сигналов и в других областях науки и техники.
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Метод изображений (метод зеркальных отображений) — один из методов математической физики, применяемый для решения краевых задач для уравнения Гельмгольца, уравнения Пуассона, волнового уравнения и некоторых других.
Станда́ртный ква́нтовый преде́л (СКП) в квантовой механике — ограничение, накладываемое на точность непрерывного или многократно повторяющегося измерения какой-либо величины, описываемой оператором, который не коммутирует сам с собой в разные моменты времени. Предсказан в 1967 году В. Б. Брагинским, а сам термин стандартный квантовый предел (англ. standard quantum limit, SQL) был предложен позднее Торном. СКП тесно связан с соотношением неопределенностей Гейзенберга.
Обобщённые координаты — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Физи́ческий ма́ятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.
Круг Мора — это круговая диаграмма, дающая наглядное представление о напряжениях в различных сечениях, проходящих через данную точку. Названа в честь Отто Кристиана Мора. Является двумерной графической интерпретацией тензора напряжений.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем (открытие волн материи), В. Гейзенбергом (создание матричной механики, открытие принципа неопределённости), Э. Шрёдингером (уравнение Шрёдингера), Н. Бором (формулировка принципа дополнительности). Завершил создание математических основ квантовой механики...
Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.
Свёртка последовательностей — это результат перемножения элементов двух заданных числовых последовательностей таким образом, что члены одной последовательности берутся с возрастанием индексов, а члены другой — с убыванием (что и служит основанием для принятого названия данной операции).
Теория Линдхард — метод расчета эффекта экранировки электрического поля электронами в твердом теле. Он базируется на квантовой механике (первый порядок теории возмущений) в пpиближении случайной фазы.
Уравнение ренормгруппы (уравнение Каллана — Симанчика) — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
Геометрический фактор (также этендю, от фр. étendue géométrique) — физическая величина, характеризующая то, насколько свет в оптической системе "расширен" по размерам и направлениям. Эта величина соответствует параметру качества пучка (BPP) в физике Гауссовых пучков.
Осцилляции Зенера — Блоха — колебания частицы, движущейся в периодическом потенциале, под действием постоянной силы. Примером системы, в которой могут реализоваться такие колебания, является кристаллическое твердое тело. В реальных кристаллах создать условия для наблюдения осцилляций Зенера — Блоха трудно, однако они наблюдались в искусственных системах, например, сверхрешётках.
Теория изгиба балок Тимошенко была развита Степаном Прокофьевичем Тимошенко в начале XX века. Модель учитывает сдвиговую деформацию и вращательные изгибы, что делает её применимой для описания поведения толстых балок, сэндвич-панелей и высокочастотных колебаний балок, когда длина волны этих колебаний становится сравнимой с толщиной балки.
Комплекс задач о взаимодействии многих тел достаточно обширный и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на...
Подробнее: Взаимодействие многих тел
Уравнение синус-Гордона — это нелинейное гиперболическое уравнение в частных производных в 1 + 1 измерениях, включающее в себя оператор Даламбера и синус неизвестной функции. Изначально оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной отрицательной кривизны. Это уравнение привлекло много внимания в 1970-х из-за наличия у него солитонных решений.
Фотоны, которые мигрируют в биологических тканях могут быть описаны при помощи численного моделирования методом Монте Карло или аналитическим уравнением переноса излучения (УПИ). Однако, УПИ трудно решается без применения упрощений (приближений). Стандартным методом упрощения УПИ является диффузионное приближение. Общее решение уравнения диффузии для фотонов получается быстрее, но менее точно чем методом Монте Карло.
Подробнее: Диффузионное приближение УПИ в тканях
Теоре́ма о сложе́нии скоросте́й — одна из теорем кинематики, связывает между собой скорости материальной точки в различных системах отсчёта. Утверждает, что при сложном движении материальной точки её абсолютная скорость равна сумме относительной и переносной скоростей.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Ве́кторная величина ́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Винеровское оценивание — задача нахождения импульсной характеристики линейной стационарной системы, дающей на выходе оптимальную в смысле минимума математического ожидания средней квадратической ошибки оценку значений полезного сигнала, поступающего на вход в аддитивной смеси с шумом.
Магнитоста́тика — раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае. Под случаем магнитостатики или приближением магнитостатики понимают выполнение этих условий (постоянства токов и полей — или достаточно медленное их изменение со временем), чтобы можно было пользоваться методами магнитостатики в качестве практически точных или хотя бы приближенных. Магнитостатика...
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
Диакоптика , или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
Пространственно-временная диаграмма , также известная как Диаграмма Минковского, была разработана в 1908 г. Германом Минковским и дает иллюстрацию свойств пространства и времени в специальной теории относительности. Она позволяет без математических уравнений качественно понимать такие явления, как замедление времени и Лоренцево сокращение.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Гауссов пучок — пучок электромагнитного излучения, в котором распределение электрического поля и излучения в поперечном сечении хорошо аппроксимируется функцией Гаусса. Когерентный световой пучок с гауссовым распределением поля имеет фундаментальное значение в теории волновых пучков. Этот пучок называют основной модой в отличие от других мод более высокого порядка.
Координаты Борна в специальной теории относительности — система координат, применяемая для описания вращающейся окружности или (в более общем смысле) диска.
Блочно-ориентированные модели — это представление нелинейных систем в виде различных комбинаций инерционных звеньев и нелинейных безынерционных математических элементов. Такое представление моделей позволяет связать в явном виде входные и выходные переменные объектов с различной структурой и степенью нелинейности. К таким системам относятся системы типа Гаммерштейна, Винера, Винера-Гаммерштейна, фильтра Заде, обобщенной модели Винера и Sm-системы.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Силовая линия, или интегральная кривая, — это кривая, касательная к которой в любой точке совпадает по направлению с вектором, являющимся элементом векторного поля в этой же точке. Применяется для визуализации векторных полей, которые сложно наглядно изобразить каким-либо другим образом. Иногда (не всегда) на этих кривых ставятся стрелочки, показывающие направление вектора вдоль кривой. Для обозначения векторов физического поля, образующих силовые линии, обычно используется термин «напряжённость...
Подробнее: Силовые линии векторного поля
Оператор Собеля — дискретный дифференциальный оператор, вычисляющий приближённое значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Используется в области обработки изображений, в частности, часто применяется в алгоритмах выделения границ.