Связанные понятия
Группа орнамента (или группа плоской симметрии, или плоская кристаллографическая группа) — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.
Подробнее: Фундаментальная область
Паралле́льный перено́с (иногда трансляция) ― частный случай движения, при котором все точки пространства перемещаются в одном и том же направлении на одно и то же расстояние.
Однородные координаты ―
система координат , используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
В геометрии подстановки плиток — это метод построения мозаик. Наиболее важно, что некоторые подстановки плиток образуют апериодические мозаики, то есть замощения, протоплитки которых не образуют какую-либо мозаику с параллельным переносом. Наиболее известные из них — мозаики Пенроуза. Подстановочные мозаики являются специальными случаями правил конечного подразделения, когда не требуется геометрическое равенство плиток.
Точечная группа в трёхмерном пространстве — это группа изометрий в трёхмерном пространстве, не перемещающая начало координат, или группа изометрий сферы. Группа является подгруппой ортогональной группы O(3), группы всех изометрий, оставляющих начало координат неподвижным, или, соответственно, группы ортогональных матриц. O(3) сама является подгруппой евклидовой группы E(3) движений 3-мерного пространства.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Символы Шёнфлиса — одно из обозначений точечных групп симметрии, наряду с символами Германа — Могена. Предложены немецким математиком Артуром Шёнфлисом в книге «Kristallsysteme und Kristallstruktur» в 1891.
Трансляционная симметрия — тип симметрии, при котором свойства рассматриваемой системы не изменяются при сдвиге на определённый вектор, который называется вектором трансляции. Например, однородная среда совмещается сама с собой при сдвиге на любой вектор, поэтому для неё свойственна трансляционная симметрия.
В теории групп циклическая перестановка — это перестановка элементов некоторого множества X, которая переставляет элементы некоторого подмножества S множества X циклическим образом, сохраняя на месте остальные элементы X (т.е. отображая их в себя). Например, перестановка {1, 2, 3, 4}, переводящая 1 в 3, 3 в 2, 2 в 4 и 4 в 1 является циклической, в то время как перестановка, переводящая 1 в 3, 3 в 1, 2 в 4 и 4 в 2 циклической не является.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Многоугольник Петри для правильного многогранника в размерности n — это пространственный многоугольник, такой что любые (n-1) последовательных ребра (но не n) принадлежат одной (n-1)-мерной грани.
Бесконечная группа — группа с бесконечным числом элементов, в противоположность конечным группам.
Плитки Вана (или домино Вана), впервые предложенные математиком, логиком и философом Хао Ваном в 1961, — это класс формальных систем. Они моделируются визуально с помощью квадратных плиток с раскрашиванием каждой стороны. Определяется набор таких плиток (например, как на иллюстрации), затем копии этих плиток прикладываются друг к другу с условием согласования цветов сторон, но без вращения или симметрического отражения плиток.
Октамино — восьмиклеточные полимино, то есть плоские фигуры, состоящие из восьми равных квадратов, соединённых сторонами. С фигурами октамино, как со всеми полимино, связано много задач занимательной математики.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.
Диэдральная группа (группа диэдра) — группа симметрии правильного многоугольника, включающая как вращения, так и осевые симметрии. Диэдральные группы являются простейшими примерами конечных групп и играют важную роль в теории групп, геометрии и химии. Хорошо известно и совершенно тривиально проверяется, что группа, образованная двумя инволюциями с конечным числом элементов в области определения является диэдральной группой.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Коллинеа́рность — отношение параллельности векторов: два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой. Допусти́м синоним — «параллельные» векторы.
Ортогона́льность (от греч. ὀρθογώνιος «прямоугольный» ← ὀρθός «прямой; правильный» + γωνία «угол») — понятие, являющееся обобщением перпендикулярности для линейных пространств с введённым скалярным произведением.
Три вектора (или большее число) называются компланарными, если они, будучи приведёнными к общему началу, лежат в одной плоскости.
Подробнее: Компланарность
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Статья описывает упаковку
кругов на поверхностях. Для связанной статьи об упаковке кругов с заданным графом пересечений, см. статью «Теорема об упаковке кругов».
Плоскость Фано — конечная проективная плоскость порядка 2, имеющая наименьшее возможное число точек и прямых (7 точек и 7 прямых), с тремя точками на каждой прямой и с тремя прямыми, проходящими через каждую точку. Названа по имени итальянского математика Джино Фано.
В геометрии
построение Витхоффа , или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Матрица жёсткости (матрица Дирихле) — матрица особого вида, использующаяся в методе конечных элементов для решения дифференциальных уравнений в частных производных. Она применяется при решениях задач электродинамики и механики.
Отражение , зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью).
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
В математике группа треугольника — это группа, которая может быть представлена геометрически при помощи последовательных отражений относительно сторон треугольника. Треугольником может служить обычный евклидов треугольник, треугольник на сфере или гиперболический треугольник. Любая группа треугольника является группой симметрии паркета конгруэнтных треугольников в двумерном пространстве, на сфере или на плоскости Лобачевского (см. также статью об гиперболической плоскости ).
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
В геометрии 4-мерный многогранник — это многогранник в четырёхмерном пространстве. Многогранник является связанной замкнутой фигурой, состоящей из многогранных элементов меньшей размерности — вершин, рёбер, граней (многоугольников) и ячеек (3-мерных многогранников). Каждая грань принадлежит ровно двум ячейкам.
Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.
Шестиуго́льный парке́т (шестиугольный паркета́ж) или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.
В геометрии фигуру называют хиральной (и говорят, что она обладает хиральностью), если она не совпадает со своим зеркальным отображением, точнее, не может быть совмещена с ним только вращениями и параллельными переносами. Хиральная фигура и её зеркальный образ называют энантиоморфами. Слово хиральность происходит от др.-греч. χειρ (хеир) — «рука». Это самый известный хиральный объект. Слово энантиоморф происходит от др.-греч. εναντιος (энантиос) — «противоположный», и μορφη (морфе) — «форма». Нехиральный...
Подробнее: Хиральность (математика)
Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.
Подробнее: Двадцатичетырёхъячейник
Мозаика Пенроуза , плитки Пенроуза — общее название трёх типов непериодического разбиения плоскости. Названы в честь английского математика Роджера Пенроуза, который исследовал эти разбиения в 70-х годах XX века.
Поворо́т (враще́ние) — движение, при котором по крайней мере одна точка плоскости (пространства) остаётся неподвижной.
Тришестиугольная мозаика — это одна из 11 однородных мозаик на евклидовой плоскости из правильных многоугольников. Мозаика состоит из правильных треугольников и правильных шестиугольников, расположенных так, что каждый шестиугольник окружён треугольниками, и наоборот. Название мозаики вызвано тем фактом, что она комбинирует правильную шестиугольную мозаику и правильную треугольную мозаику. Два шестиугольника и два треугольника чередуются вокруг каждой вершины, а рёбра образуют бесконечную конфигурацию...
Группа
симметрии (также группа симметрий) некоторого объекта (многогранника или множества точек из метрического пространства) ― группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.
Треугольник Шварца представляется тремя рациональными числами (p q r), каждое из которых задаёт угол в вершине. Значение n/d означает, что угол в вершине треугольника равен d/n развёрнутого угла. 2 означает прямоугольный треугольник. Если эти числа целые, треугольник называется треугольником Мёбиуса и он соответствует мозаике без перекрытий, а группа симметрии называется группой треугольника. На сфере имеется 3 треугольника Мёбиуса и ещё одно однопараметрическое семейство. На плоскости имеется три...
Площадь плоской фигуры — аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов.
Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.