Связанные понятия
Формальная грамматика или просто грамматика в теории формальных языков — способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита. Различают порождающие и распознающие (или аналитические) грамматики — первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит ли оно в язык или нет.
Контекстно-свободная грамматика (КС-грамматика, бесконтекстная грамматика) — частный случай формальной грамматики (тип 2 по иерархии Хомского), у которой левые части всех продукций являются одиночными нетерминалами (объектами, обозначающими какую-либо сущность языка (например: формула, арифметическое выражение, команда) и не имеющими конкретного символьного значения). Смысл термина «контекстно-свободная» заключается в том, что есть возможность применить продукцию к нетерминалу, причём независимо...
Арифме́тика (др.-греч. ἀριθμητική (árithmitikí) — от ἀριθμός (árithmós) «число») — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа (натуральные, целые, рациональные, вещественные, комплексные числа) и его свойства. В арифметике рассматриваются измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая...
Индукция грамматики (или грамматический вывод) — это процесс в машинном обучении для обучения формальной грамматике (обычно в виде набора правил вывода или порождающих правил или, альтернативно, как конечный автомат или автомат другого вида) из набора наблюдений, то есть построение модели, которая описывает наблюдаемые объекты. Более обще, грамматический вывод — это такая ветвь машинного обучения, в которой пространство примеров состоит из дискретных комбинаторных объектов, таких как строки, деревья...
История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом. Арифметика — наука о числах, их свойствах и отношениях — является одной из основных математических наук. Она тесно связана с алгеброй и теорией чисел.
Сюрреальные числа (англ. surreal number — название принадлежит американскому математику Дональду Кнуту) впервые были использованы под другим названием («числа» — англ. number) в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
Число ́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.
Элемента́рная а́лгебра — самый старый раздел алгебры, в котором изучаются алгебраические выражения и уравнения над вещественными и комплексными числами.
Сте́мминг — это процесс нахождения основы слова для заданного исходного слова. Основа слова не обязательно совпадает с морфологическим корнем слова.
Форма Бэкуса — Наура (сокр. БНФ, Бэкуса — Наура форма) — формальная система описания синтаксиса, в которой одни синтаксические категории последовательно определяются через другие категории. БНФ используется для описания контекстно-свободных формальных грамматик. Существует расширенная форма Бэкуса — Наура, отличающаяся лишь более ёмкими конструкциями.
Грамматика сложения деревьев (англ. tree-adjoining grammar, TAG) — это формальная грамматика, придуманная Аравиндом Джоши. Эта грамматика обобщает контекстно-свободную грамматику тем, что элементарной единицей в правилах вывода являются деревья, а не отдельные символы. Таким образом грамматика определяет правила замены узлов дерева на поддеревья (см. дерево в теории графов и дерево в информатике).
Математические обозначения («язык математики») — сложная графическая система обозначений, служащая для изложения абстрактных математических идей и суждений в человеко-читаемой форме. Составляет (по своей сложности и разнообразию) значительную долю неречевых знаковых систем, применяемых человечеством. В данной статье описывается общепринятая международная система обозначений, хотя различные культуры прошлого имели свои собственные, и некоторые из них даже имеют ограниченное применение до сих пор...
Расширенная форма Бэкуса — Наура (расширенная Бэкус — Наурова форма (РБНФ)) (англ. Extended Backus–Naur Form (EBNF)) — формальная система определения синтаксиса, в которой одни синтаксические категории последовательно определяются через другие. Используется для описания контекстно-свободных формальных грамматик. Предложена Никлаусом Виртом. Является расширенной переработкой форм Бэкуса — Наура, отличается от БНФ более «ёмкими» конструкциями, позволяющими при той же выразительной способности упростить...
Матричная грамматика — это формальная грамматика, в которой правила вывода группируются в конечные последовательности. Правила вывода не могут применяться по отдельности, а только в последовательности. При применении такой последовательности, замена производится в соответствии с каждым правилом в последовательности, с первой по последнюю. Последовательности называют матрицами.
Формальный язык в математической логике и информатике — множество конечных слов (строк, цепочек) над конечным алфавитом. Понятие языка чаще всего используется в теории автоматов, теории вычислимости и теории алгоритмов. Научная теория, которая имеет дело с этим объектом, называется теорией формальных языков.
Выразительность языка программирования — качество языка, показывающее, насколько разнообразны идеи, которые можно реализовать на этом языке, и насколько легко они читаются.
Ле́йпцигские пра́вила глосси́рования (англ. Leipzig glossing rules) — предложенный для унифицированного использования при представлении языковых примеров в лингвистических работах набор правил глоссирования (поморфемной нотации). Включает как собственно правила оформления интерлинеарных глосс, так и список рекомендуемых сокращений (грамматических помет, «ярлыков»), используемых для обозначения грамматических категорий.
Частотный анализ , частотный криптоанализ — один из методов криптоанализа, основывающийся на предположении о существовании нетривиального статистического распределения отдельных символов и их последовательностей как в открытом тексте, так и в шифротексте, которое, с точностью до замены символов, будет сохраняться в процессе шифрования и дешифрования.
В теории множеств и смежных с ней областях математики под универсумом фон Неймана (обозначается V), или иерархией множеств по фон Нейману, понимается класс, образованный наследственными фундированными множествами. Такая совокупность, формализуемая теорией множеств Цермело-Френкеля (ZFC) часто используется в качестве интерпретации или обоснования ZFC-аксиом.
Подробнее: Универсум фон Неймана
Нисходящий синтаксический анализ (англ. top-down parsing) — это один из методов определения принадлежности входной строки к некоторому формальному языку, описанному LL(k) контекстно-свободной грамматикой. Это класс алгоритмов грамматического анализа, где правила формальной грамматики раскрываются, начиная со стартового символа, до получения требуемой последовательности токенов.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Подробнее: Конструктивные способы определения вещественного числа
Неформально (обычно в развлекательной математике и научно-популярной литературе) большими числами называют числа, значительно превосходящие числа, используемые в повседневной жизни.
Подробнее: Большие числа
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством. Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики.
Гло́ттохроноло́гия (от др.-греч. γλῶττα «язык» + χρóνος «время» + λόγος «слово; учение») — гипотетический метод сравнительно-исторического языкознания для предположительного определения времени разделения родственных языков, основанный на гипотезе, что скорость изменения базового словаря языка остаётся примерно одинаковой. Эта гипотеза предложена Моррисом Сводешом как попытка аналогии с радиоуглеродным методом измерения возраста органических веществ. В лингвистике предлагается оценивать «лексический...
Порядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой.
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Решётка (ранее использовался термин структура) — частично упорядоченное множество, в котором каждое двухэлементное подмножество имеет как точную верхнюю (sup), так и точную нижнюю (inf) грани. Отсюда вытекает существование этих граней для любых непустых конечных подмножеств.
Алгори́тм (лат. algorithmi — от арабского имени математика Аль-Хорезми) — конечная совокупность точно заданных правил решения произвольного класса задач или набор инструкций, описывающих порядок действий исполнителя для решения некоторой задачи. В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок». Независимые инструкции могут выполняться...
Норма́льный алгори́тм (алгори́фм) Ма́ркова (НАМ, также марковский алгоритм) — один из стандартных способов формального определения понятия алгоритма (другой известный способ — машина Тьюринга). Понятие нормального алгоритма введено А. А. Марковым (младшим) в конце 1940-х годов в работах по неразрешимости некоторых проблем теории ассоциативных вычислений. Традиционное написание и произношение слова «алгорифм» в этом термине также восходит к его автору, многие годы читавшему курс математической логики...
Сопоставление с образцом (англ. Pattern matching) — метод анализа и обработки структур данных в языках программирования, основанный на выполнении определённых инструкций в зависимости от совпадения исследуемого значения с тем или иным образцом, в качестве которого может использоваться константа, предикат, тип данных или иная поддерживаемая языком конструкция.
Теория оптимальности (ОТ) — лингвистическая теория, предложенная в начале 90-х годов 20-го века П. Смоленским, А. Принсом, Дж. Маккарти и др. Теория оптимальности возникла в рамках фонологии, однако вскоре нашла применение и в других областях лингвистики. ОТ обычно рассматривается как направление в рамках генеративной лингвистики, предметом которой является исследование универсальных принципов языка, лингвистической типологии, механизмов усвоения языка, порождения и восприятия речи. ОТ часто называют...
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов...
Переме́нная — атрибут физической или абстрактной системы, который может изменять своё, как правило численное, значение. Понятие переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить: температура воздуха, параметр функции и многое другое.
Данная статья — часть обзора История математики.Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э.
Подробнее: Математика в Древнем Египте
РЕФАЛ (РЕкурсивных Функций АЛгоритмический) — один из старейших функциональных языков программирования, ориентированный на символьные вычисления: обработку символьных строк (например, алгебраические выкладки); перевод с одного языка (искусственного или естественного) на другой; решение проблем, связанных с искусственным интеллектом. Соединяет в себе математическую простоту с практической направленностью на написание больших и сложных программ.
Аддитивная комбинаторика (от англ. addition — сложение) — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы (как правило, конечной), а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств (например, подмножеств...
Книга абака (лат. Liber abaci) — главный труд Фибоначчи (Леонардо Пизанского), посвященный изложению и пропаганде десятичной арифметики. Книга написана в 1202 г., вторая переработанная редакция — 1228 г., посвящена Майклу Скоту. До наших дней дошла только вторая версия.
В лингвистике,
катена (англ. catena «вереница, череда»; от лат. catena «цепь») — синтаксическая и морфологическая единица, тесно связанная с грамматиками зависимостей. Она является более гибким и объемлющим понятием, чем составляющая, и поэтому, вероятно, может лучше составляющей служить в качестве фундаментальной единицы синтактического и морфосинтактического анализа.
Омега-язык (ω-язык) — это множество бесконечно длинных последовательностей символов.
Четыре четверки — математическая головоломка по поиску простейшего математического выражения для каждого целого числа от 0 до некоторого максимума, используя лишь общие математические символы и четвёрки (никакие другие цифры не допускаются). Большинство версий «четырёх четверок» требует, чтобы каждое выражение содержало ровно четыре четверки, но некоторые вариации требуют, чтобы каждое выражение имело минимальное количество четверок.
Лингвистическая переменная — в теории нечётких множеств, переменная, которая может принимать значения фраз из естественного или искусственного языка.
Грамматика составляющих (метод составляющих; англ. constituency grammar, phrase structure grammar) основана на постулате, согласно которому всякая сложная грамматическая единица складывается из двух более простых и не пересекающихся единиц, называемых её непосредственными составляющими (англ. immediate constituent).
В информатике
лексический анализ («токенизация», от англ. tokenizing) — процесс аналитического разбора входной последовательности символов на распознанные группы — лексемы, с целью получения на выходе идентифицированных последовательностей, называемых «токенами» (подобно группировке букв в словах). В простых случаях понятия «лексема» и «токен» идентичны, но более сложные токенизаторы дополнительно классифицируют лексемы по различным типам («идентификатор, оператор», «часть речи» и т. п.). Лексический...
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Гомотопическая теория типов (HoTT, от англ. homotopy type theory) — математическая теория, особый вариант теории типов, снабжённый понятиями из теории категорий, алгебраической топологии, гомологической алгебры; базируется на взаимосвязи между понятиями о гомотопическом типе пространства, высших категориях и типах в логике и языках программирования.