Связанные понятия
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Конечная геометрия — это любая геометрическая система, имеющая конечное количество точек. Например, евклидова геометрия не является конечной, так как евклидова прямая содержит неограниченное число точек, а точнее говоря, содержит ровно столько точек, сколько существует вещественных чисел. Конечная геометрия может иметь любое конечное число измерений.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
Математи́ческая структу́ра — название, объединяющее понятия, общей чертой которых является их применимость к множествам, природа которых не определена. Для определения самой структуры задают отношения, в которых находятся элементы этих множеств. Затем постулируют, что данные отношения удовлетворяют неким условиям, которые являются аксиомами рассматриваемой структуры.
Прострáнством называется математическое множество, имеющее структуру, определяемую аксиоматикой свойств его элементов (например, точек в геометрии, векторов в линейной алгебре, событий в теории вероятностей и так далее).Подмножество пространства называется «подпространством», если структура пространства индуцирует на этом подмножестве структуру такого же типа (точное определение зависит от типа пространства).
Подробнее: Пространство (математика)
Асимптотическое разложение функции f(x) — формальный функциональный ряд, такой, что сумма произвольного конечного числа членов этого ряда приближает (аппроксимирует) функцию f(x) в окрестности некоторой (возможно, бесконечно удалённой) её предельной точки. Понятие асимптотического разложения функции и асимптотического ряда были введены Анри Пуанкаре при разрешении задач небесной механики. Отдельные случаи асимптотического разложения были открыты и применялись ещё в XVIII в. Асимптотические разложения...
Математическая предметная классификация (МПК, англ. Mathematics Subject Classification, MSC) — буквенно-цифровая классификационная система разделов математики и направлений математических исследований, разработанная и используемая двумя основными обзорными математическими базами данных — Mathematical Reviews и Zentralblatt MATH, ведомыми, соответственно, Американским математическим обществом и Европейским математическим обществом. Классификатор содержит более 5 тыс. сгруппированных в трёхуровневую...
Интервальная арифметика — математическая структура, которая для вещественных интервалов определяет операции, аналогичные обычным арифметическим. Эту область математики называют также интервальным анализом или интервальными вычислениями. Данная математическая модель удобна для исследования различных прикладных объектов...
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Метод итерации — численный метод решения математических задач, приближённый метод решения системы линейных алгебраических уравнений. Суть такого метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным).
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Аддитивная комбинаторика (от англ. addition — сложение) — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы (как правило, конечной), а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств (например, подмножеств...
Геометрическая теория групп — область математики, изучающая конечно-порождённые группы с помощью связей между их алгебраическими свойствами и топологическими и геометрическими свойствами пространств, на которых такие группы действуют, либо самих групп, рассматриваемых как геометрические объекты (что обычно делается рассмотрением графа Кэли и соответствующей словарной метрики).
Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G...
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Магма (группоид) в общей алгебре — алгебра, состоящая из множества М с одной бинарной операцией M × M → M. Помимо требования замкнутости множества относительно заданной на нём операции, других требований к операции и множеству не предъявляется.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Теорема Ласкера — Нётер утверждает, что каждый идеал нётерова кольца можно записать в виде конечного пересечения примарных идеалов. Такое представление идеала называется примарным разложением. В случае области главных идеалов это эквивалентно представлению в виде конечного пересечения (или произведения) степеней простых идеалов, то есть обобщает основную теорему арифметики. В 1905 теорема была доказана Эммануилом Ласкером в частном случае колец многочленов или сходящихся степенных рядов; общий случай...
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
В математике (особенно в теории категорий), коммутативная диаграмма — изображаемая в наглядном виде структура наподобие графа, вершинами которой служат объекты определённой категории, а рёбрами — морфизмы. Коммутативность означает, что для любых выбранных начального и конечного объекта для соединяющих их ориентированных путей композиция соответствующих пути морфизмов не будет зависеть от выбора пути.
Подробнее: Коммутативная диаграмма
Переписывание — широкий спектр техник, методов и теоретических результатов, связанных с процедурами последовательной замены частей формул или термов формального языка по заданной схеме — системе переписывающих правил.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.