Связанные понятия
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Сюрреальные числа (англ. surreal number — название принадлежит американскому математику Дональду Кнуту) впервые были использованы под другим названием («числа» — англ. number) в работах английского математика Джона Конвея для описания ряда аспектов теории игр.
Составно́е число ́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
В комбинаторной математике под числом встреч понимается число перестановок множества {1, ..., n} с заданным числом неподвижных элементов.
Подробнее: Число встреч (комбинаторика)
В комбинаторике,
Числа Нараяны N(n, k), n = 1, 2, 3 ..., 1 ≤ k ≤ n, формируют треугольную матрицу натуральных чисел, называемую Треугольником Нараяны, который всплывает во многих задачах перечислительной комбинаторики. Названы в честь индийского математика Т. В. Нараяны (1930–1987).
Эта страница содержит
список первых 500 простых чисел, а также списки некоторых специальных типов простых чисел.
Порядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой.
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Голигон — это любой многоугольник, в котором все углы прямые, а длины сторон являются последовательными целыми числами (от 1 до n). Голигоны придумал (и дал им название) Ли Сэллоус, а популяризовал Александр Дьюдени в колонке 1990 года в журнале Scientific American . Вариации определения голигонов позволяют сторонам пересекаться, иметь в качестве длин сторон любые целые числа (не обязательно последовательные) и иметь углы, отличные от 90°.
Дедеки́ндово сече́ние (или у́зкая щель) — один из способов построения вещественных чисел из рациональных.
Четыре четверки — математическая головоломка по поиску простейшего математического выражения для каждого целого числа от 0 до некоторого максимума, используя лишь общие математические символы и четвёрки (никакие другие цифры не допускаются). Большинство версий «четырёх четверок» требует, чтобы каждое выражение содержало ровно четыре четверки, но некоторые вариации требуют, чтобы каждое выражение имело минимальное количество четверок.
Весьма избыточное число или высокоизбыточное число — это натуральное число, сумма делителей которого (включая само число) больше суммы делителей любого меньшего натурального числа.
Число Райо — большое число, названное в честь Агустина Райо, который объявил самое большое число с собственным именем. Изначально ему было дано точное определение на «дуэли больших чисел» в Массачусетском технологическом институте 26 января 2007 года.
Теория Рамсея — раздел математики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок. Названа в честь Фрэнка Рамсея.
Тождество максимумов и минимумов — математическое соотношение между максимальным элементом конечного множества чисел и минимальными элементами всех его непустых подмножеств.
В математике, числа
негафибоначчи — отрицательно индексированные элементы последовательности чисел Фибоначчи.
Полимино , или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам. Это полиформы, сегменты которых являются квадратами.
Двенадцатикратный путь или двенадцать сценариев — это систематическая классификация 12 связанных перечислительных задач, касающихся двух конечных множеств, которые включают классические задачи подсчёта перестановок, сочетаний, мультимножеств и разбиений либо множества, либо числа. Идею классификации приписывают Джиану-Карло Роту, а название двенадцатикратный путь предложил Джоэл Спенсер. Название намекает, что используя те же подходы в 12 случаях, но с небольшими изменениями в условиях, мы получаем...
Псевдопростое число — натуральное число, обладающее некоторыми свойствами простых чисел, являясь тем не менее составным. В зависимости от рассматриваемых свойств существует несколько различных типов псевдопростых чисел.
Фигу́рные чи́сла — общее название чисел, связанных с той или иной геометрической фигурой. Это историческое понятие восходит к пифагорейцам. Предположительно, с понятием фигурного числа связано выражение «возвести число в квадрат или в куб». В теории чисел и комбинаторике фигурные числа связаны с многими другими классами целых чисел — биномиальными коэффициентами, совершенными числами, числами Мерсенна, Ферма, Фибоначчи, Люка и другими.
При конструктивном подходе к определению вещественного числа вещественные числа строят, исходя из рациональных, которые считают заданными. Во всех трёх нижеизложенных способах за основу берутся рациональные числа и конструируются новые объекты, называемые иррациональными числами. В результате пополнения ими множества рациональных чисел, мы получаем множество вещественных чисел.
Подробнее: Конструктивные способы определения вещественного числа
Диаграмма «стебель-листья » — схема представления статистических данных в описательной статистике. Даёт возможность визуально оценить форму и размах распределения данных. В отличие от гистограммы, не требует предварительной группировки данных в интервалы, хотя и для составления диаграммы «стебель-листья» может требоваться округление до двух десятичных знаков.
n-ое
число такси , обычно обозначаемое Ta(n) или Taxicab(n), определяется как наименьшее число, которое может быть представлено как сумма двух положительных кубов n различными способами. Наиболее известное число такси — 1729 = Ta(2) = 13 + 123 = 93 + 103.
Папирус Ахмеса был обнаружен в 1858 году в Фивах и часто называется папирусом Ринда (Райнда) по имени его первого владельца.
Алгоритм большинства голосов Бойера — Мура — это алгоритм для нахождения преобладающего элемента последовательности. Преобладающим элементом последовательности длины n называется такой элемент этой последовательности, который встречается в ней более чем n/2 раз. Сложность данного алгоритма O(n), а требуемая дополнительная память — O(1).
Полуинвариант ы, или семиинварианты, или кумулянты — коэффициенты в разложении логарифма характеристической функции случайной величины в ряд Маклорена.
История арифметики охватывает период от возникновения счёта до формального определения чисел и арифметических операций над ними с помощью системы аксиом. Арифметика — наука о числах, их свойствах и отношениях — является одной из основных математических наук. Она тесно связана с алгеброй и теорией чисел.
Прямоуго́льное число ́ — число, являющееся произведением двух последовательных целых чисел, то есть n·(n + 1).
Номиналы промышленно выпускаемых электронных компонентов (сопротивление резисторов, ёмкость конденсаторов, индуктивность небольших катушек индуктивности) не являются произвольными. Существуют установленные стандартом специальные ряды номиналов, представляющие собой множества значений от 1 до 10. Номинал детали определённого ряда является некоторым значением из соответствующего ряда, умноженным на произвольный десятичный множитель (10 в целой степени).
Подробнее: Ряды номиналов радиодеталей
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Безопасное простое число — это простое число вида 2p + 1, где p также простое (и наоборот, p есть простое число Софи Жермен). Несколько первых безопасных простых чисел...
Суперпростые числа (также известны как простые числа высшего порядка) — это подмножество простых чисел, стоящих в списке простых чисел на позициях, являющихся простыми числами (то есть это 2-е, 3-е, 5-е, 7-е, 11-е, 13-е, 17-е и т.д. по счёту простые числа).
Подробнее: Суперпростое число
Система Штейнера (названа именем Якоба Штейнера) — вариант блок-схем, точнее, t-схемы с λ = 1 и t ≥ 2.
Таблица характеров — это двумерная таблица, строки которой соответствуют неприводимым представлениям группы, а столбцы которой соответствует классам сопряжённости элементов группы. Элементы матрицы состоят из характеров, следов матриц, представляющих группу элементов класса столбца в определяемом строкoй представлении группы.
Арифме́тика (др.-греч. ἀριθμητική (árithmitikí) — от ἀριθμός (árithmós) «число») — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа (натуральные, целые, рациональные, вещественные, комплексные числа) и его свойства. В арифметике рассматриваются измерения, вычислительные операции (сложение, вычитание, умножение, деление) и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая...
Последовательность без простых чисел — это последовательность целых чисел, не содержащая каких-либо простых чисел. Как правило, при этом предполагается, что последовательность задана той же рекуррентной формулой, что и для чисел Фибоначчи, но с другими начальными условиями, и все члены последовательности должны быть cоставными числами, не имеющими общего для всех членов делителя. Таким образом, последовательность этих чисел определяется путём выбора двух составных чисел a1 и a2, для которых наибольший...
В теории чисел гладким числом называется целое число, все простые делители которого малы.
Подробнее: Гладкое число
Диэдральная группа (группа диэдра) — группа симметрии правильного многоугольника, включающая как вращения, так и осевые симметрии. Диэдральные группы являются простейшими примерами конечных групп и играют важную роль в теории групп, геометрии и химии. Хорошо известно и совершенно тривиально проверяется, что группа, образованная двумя инволюциями с конечным числом элементов в области определения является диэдральной группой.
Разделение секрета (англ. Secret sharing) — термин в криптографии, под которым понимают любой из способов распределения секрета среди группы участников, каждому из которых достаётся своя некая доля. Секрет может воссоздать только коалиция участников из первоначальной группы, причём входить в коалицию должно не менее некоторого изначально известного их числа.
Мно́жество — одно из ключевых понятий математики; это математический объект, сам являющийся набором, совокупностью, собранием каких-либо объектов, которые называются элементами этого множества и обладают общим для всех их характеристическим свойством. Изучением общих свойств множеств занимаются теория множеств, а также смежные разделы математики и математической логики.
Число очередей графа — это инвариант графа, определённый аналогично стэковому числу (толщине книги) и использующий упорядочение FIFO (первый вошёл, первый вышел, очередь) вместо упорядочения LIFO (последним вошёл, первым вышел, стэк).
Фраза
группа лиева типа обычно означает конечную группу, которая тесно связана с группой рациональных точек редуктивной линейной алгебраической группы со значениями в конечном поле. Термин «группа лиева типа» не имеет общепризнанного точного определения, но важный набор конечных простых групп лиева типа точное определение имеет и они составляют большинство групп в классификации простых конечных групп.
Теорема о дисконтинууме — утверждение о том, что между точками любых двух ограниченных дисконтинуумов можно установить взаимно однозначное соответствие, сохраняющее порядок следования точек на прямой.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Число ́ — основное понятие математики, используемое для количественной характеристики, сравнения, нумерации объектов и их частей. Письменными знаками для обозначения чисел служат цифры, а также символы математических операций. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа с развитием науки значительно расширилось.