Связанные понятия
Электромагни́тные во́лны / электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.Среди электромагнитных полей, порождённых электрическими зарядами и их движением, принято относить к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.
Микрово́лновое излучение , сверхвысокочасто́тное излуче́ние (СВЧ-излучение) — электромагнитное излучение, включающее в себя дециметровый, сантиметровый и миллиметровый диапазоны радиоволн, частоты микроволнового излучения изменяются от 300 МГц до 300 ГГц (длина волны от 1 м до 1 мм). Данное определение относит к микроволнам как УВЧ диапазон (дециметровые волны), так и КВЧ диапазон (миллиметровые волны), тогда как в радиолокации микроволновым диапазоном принято обозначать волны с частотами от 1 до...
Полупроводниковый лазер — твердотельный лазер, в котором в качестве рабочего вещества используется полупроводник. В таком лазере, в отличие от лазеров других типов (в том числе и других твердотельных), используются излучательные переходы не между локализованными уровнями энергии атомов, молекул и ионов, а между разрешёнными энергетическими зонами или подзонами кристалла. В полупроводниковом лазере накачка осуществляется...
Рентгеновская оптика — отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Рентгеновская оптика, в отличие от обычной, рассматривает электромагнитные волны в диапазоне длин волн рентгеновского 10−4 до 100 Å (от 10−14 до 10−8 м) и гамма-излучений < 10−4 Å.
Радиово́лны — электромагнитные волны с частотами до 3 ТГц, распространяющиеся в пространстве без искусственного волновода. Радиоволны в электромагнитном спектре располагаются от крайне низких частот вплоть до инфракрасного диапазона. С учетом классификации Международным союзом электросвязи радиоволн по диапазонам, к радиоволнам относят электромагнитные волны с частотами от 0,03 Гц до 3 ТГц, что соответствует длине волны от 10 млн. километров до 0,1 миллиметра.
Упоминания в литературе
Для создания лазерной искры на поверхности исследуемых материалов обычно используют твердотельные Nd: YAG
лазеры с модуляцией добротности, имеющие очень короткую (около 10 нс) длительность импульса. За счет использования наносекундных импульсов удается избежать значительной теплопередачи по объему исследуемого образца (имеет место только локальный нагрев в зоне фокусировки пучка лазера) и экранирования лазерного излучения плазмой, формирование которой происходит уже после окончания лазерного импульса.
Именно в мазерах (а на оптических и инфракрасных частотах – в лазерах) достигается огромная яркость в линии, причем спектральная ширина ее мала. Как известно, усиление излучения в линиях благодаря такому эффекту возможно тогда, когда среда, в которой распространяется излучение, каким-либо способом «активирована». Это означает, что некоторый «сторонний» источник энергии (так называемая накачка) делает концентрацию атомов или молекул на исходном (верхнем) уровне аномально высокой. Без постоянно действующей «накачки» мазер или
лазер невозможны. Вопрос о природе механизма «накачки» космических мазеров пока еще окончательно не решен. Однако, скорее всего, «накачкой» служит достаточно мощное инфракрасное излучение. Другим возможным механизмом «накачки» могут быть некоторые химические реакции.
Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое воздействие на окружающие ткани при этом распространяется на очень небольшое расстояние, так как ширина сфокусированного пучка составляет 0,01 мм. Под влиянием лазерного излучения также происходит «взрывное» разрушение ткани от воздействия своеобразной ударной волны, образующейся при мгновенном переходе тканевой жидкости в газообразное состояние. Особенности биологического действия лазерного излучения зависят от ряда его характеристик: длины волны, длительности импульсов, структуры ткани, физических свойств ткани. Рассмотрим характеристики основных применяемых в хирургии
лазеров .
Процесс записи происходит следующим образом. При считывании мощность
лазера невелика, но во время записи она возрастает (приблизительно с 0,7 мВт до порядка 8 мВт). Активный слой поглощает энергию лазера и преобразует ее в тепло (вероятно, отсюда и приосходит термин «прожечь диск»). Под действием тепла в этих местах краситель обугливается, в нем появляются микроскопические газовые пузырьки. Его объем увеличивается, что приводит к деформированию с одной стороны отражающего слоя, а с другой – и поликарбонатной основы. С точки зрения лазера такой участок диска является непрозрачным и соответствует питу. Процесс, конечно, гораздо сложнее, каждый тип активного покрытия имеет свои особенности, но данной информации вам будет достаточно для понимания принципа записи CD-R.
Электрические токи текут в каждой клетке и между клетками. Многие из клеток фактически содержат жидкие кристаллы. Живые кристаллы имеются в клеточных мембранах, в миелиновых оболочках нервных волокон и во многих других местах. Все кристаллы обладают пьезоэлектрическим эффектом, который проявляется при воздействии на них давления. Следовательно, жидкие кристаллы тела постоянно генерируют электрический ток. Токи часто бывают когерентными, что означает, что рядом с данной областью всегда имеются частоты, сходные с частотами
лазера . Эти подобные лазеру вибрации могут распространяться в пределах тела, а также излучаться наружу.
Связанные понятия (продолжение)
Волново́д — искусственный или естественный направляющий канал, в котором может распространяться волна. При этом поток мощности, переносимый волной, сосредоточен внутри этого канала или в области пространства, непосредственно примыкающей к каналу.
Фотоэлектронный умножитель (ФЭУ) — электровакуумный прибор, в котором поток электронов, излучаемый фотокатодом под действием оптического излучения (фототок), усиливается в умножительной системе в результате вторичной электронной эмиссии; ток в цепи анода (коллектора вторичных электронов) значительно превышает первоначальный фототок (обычно в 105 раз и выше). Впервые был предложен и разработан советским изобретателем Л. А. Кубецким в 1930—1934 гг.
Ма́зер (англ. maser) — квантовый генератор, излучающий когерентные электромагнитные волны сантиметрового диапазона (микроволны). Его название — сокращение фразы «Усиление микроволн с помощью вынужденного излучения» (microwave amplification by stimulated emission of radiation) — было предложено в 1954 году американцем Ч. Таунсом, одним из его создателей. Кроме Таунса к открытию непосредственного принципа работы квантового генератора причастны советские учёные А. М. Прохоров, Н. Г. Басов, а также американцы...
Твердоте́льный ла́зер — лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом состоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях).
Газовый ла́зер — лазер, в котором в качестве активной среды используется вещество, находящееся в газообразном состоянии (в отличие от твёрдых тел в твердотельных лазерах и жидкостей в лазерах на красителях).
Оптоэлектроника — раздел электроники, занимающийся вопросами использования оптических и электрических методов обработки, хранения и передачи информации. Его предметная область охватывает теоретическое исследование взаимодействия электромагнитных полей оптического диапазона (с частотами 3×1011 — 3×1017 или длинами волн 1 нм — 1 мм) с электронами в твёрдых телах и других субстанциях. Помимо этого она включает в себя прикладные принципы создания оптоэлектронных приборов, которые функционируют на основе...
Электрова́куумный прибо́р — устройство, предназначенное для генерации, усиления и преобразования электромагнитной энергии, в котором рабочее пространство освобождено от воздуха и защищено от окружающей атмосферы непроницаемой оболочкой.
Ква́нтовый генера́тор — общее название источников ЭМ-излучения, работающих на основе вынужденного излучения атомов и молекул. В зависимости от того, какую длину волны излучает квантовый генератор, он может называться по-разному...
Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Подразделяются на электровакуумные и полупроводниковые фотоэлементы. Действие прибора основано на фотоэлектронной эмиссии или внутреннем фотоэффекте. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
Гиротрон — электровакуумный СВЧ-генератор, представляющий собой разновидность мазера на циклотронном резонансе. Источником СВЧ-излучения является электронный пучок, вращающийся в сильном магнитном поле. Излучение генерируется на частоте, равной циклотронной, в резонаторе с критической частотой, близкой к генерируемой. Гиротрон был изобретён в Советском Союзе в НИРФИ в г. Горьком (ныне — Нижний Новгород).
Радио́метр — общее название ряда приборов, предназначенных для измерения энергетических характеристик того или иного излучения...
Лазеры сверхкоротких (предельно коротких) импульсов, лазеры УКИ (ПКИ), фемтосекундные лазеры — оптические квантовые генераторы, способные генерировать импульсы лазерного излучения, которые содержат достаточно малое число колебаний оптического поля.
Резона́тор Фабри́ — Перо́ — является основным видом оптического резонатора и представляет собой два соосных, параллельно расположенных и обращенных друг к другу зеркала, между которыми может формироваться резонансная стоячая оптическая волна. В лазерах одно из зеркал делается обычно более пропускающим для преимущественного вывода излучения в этом направлении.
Когере́нтность (от лат. cohaerens — «находящийся в связи») — в физике скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.
Пла́зма (от греч. πλάσμα «вылепленное, оформленное») — ионизованный газ, одно из четырёх основных агрегатных состояний вещества.
Дифра́кция во́лн (лат. diffractus — буквально разломанный, переломанный, огибание препятствия волнами) — явление, которое проявляет себя как отклонение от законов геометрической оптики при распространении волн. Она представляет собой универсальное волновое явление и характеризуется одними и теми же законами при наблюдении волновых полей разной природы.
Сцинтилля́торы — вещества, обладающие способностью излучать свет при поглощении ионизирующего излучения (гамма-квантов, электронов, альфа-частиц и т. д.). Как правило, излучаемое количество фотонов для данного типа излучения приближённо пропорционально поглощённой энергии, что позволяет получать энергетические спектры излучения. Сцинтилляционные детекторы ядерных излучений — основное применение сцинтилляторов. В сцинтилляционном детекторе свет, излученный при сцинтилляции, собирается на фотоприёмнике...
Интерферометр — измерительный прибор, действие которого основано на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того или иного устройства пространственно разделяется на два или большее количество когерентных пучков. Каждый из пучков проходит различные оптические пути и направляется на экран, создавая интерференционную картину, по которой можно установить разность фаз интерферирующих пучков в...
Излуче́ние — это процесс испускания и распространения энергии в виде волн и частиц.
Лазеры на красителях — лазеры, использующие в качестве активной среды органические красители, обычно в форме жидкого раствора. Они принесли революцию в лазерную спектроскопию и стали родоначальником нового типа лазеров c длительностью импульса менее пикосекунды (Лазеры сверхкоротких импульсов).
Электронная пушка , электронный прожектор — устройство, с помощью которого получают пучок электронов с заданной кинетической энергией и заданной конфигурации. Чаще всего используется в кинескопах и других электронно-лучевых трубках, СВЧ-приборах (например в лампах бегущей волны), а также в различных приборах таких как электронные микроскопы и ускорители заряженных частиц.
Коллима́тор (от collimo, искажение правильного лат. collineo «направляю по прямой линии») — устройство для получения параллельных пучков лучей света или частиц.
Дифракционная решётка — оптический прибор, действие которого основано на использовании явления дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Твердоте́льная электро́ника — раздел электроники, изучающий физические принципы работы, функциональные возможности электронных приборов, в которых движение электронов или иных носителей заряда, обуславливающих электрический ток, происходит в объёме твёрдого тела. Термин «твердотельные приборы» подчеркивает отличие этих приборов от электровакуумных, газоразрядных, жидкоэлектролитных, иных электронных приборов. Также не считаются твердотельными различные электромеханические приборы и устройства такие...
Электронно-лучевые приборы (ЭЛП), также катодная трубка (англ. cathode ray tube) или электронно-лучевая трубка (ЭЛТ) — класс вакуумных электронных приборов, в которых используется поток электронов, сконцентрированный в форме одиночного луча или пучка лучей, которые управляются как по интенсивности (току), так и по положению в пространстве, и взаимодействуют с неподвижной пространственной мишенью (экраном) прибора. Основная сфера применения ЭЛП — преобразование оптической информации в электрические...
Электрический разряд — процесс протекания электрического тока, связанный со значительным увеличением электропроводимости среды относительного её состояния.
Поляриза́ция волн — характеристика поперечных волн, описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.
Интегральная оптика — раздел оптики, в котором рассматривается передача оптических волн через планарные оптические волноводы. В более широком смысле, интегральная оптика — это раздел современной оптики, занимающийся исследованием процессов распространения оптических волн в планарных тонкопленочных диэлектрических волноводах, проблемами ввода (вывода) излучения в такие волноводы, а также вопросами генерации и детектирования световых пучков в таких волноводах и управления ими с целью создания новых...
Га́зовый разря́д — совокупность процессов, возникающих при протекании электрического тока через вещество, находящееся в газообразном состоянии. Обычно протекание тока становится возможным только после достаточной ионизации газа и образования плазмы. Ионизация может происходить, в частности, в результате столкновений электронов, ускорившихся в электромагнитном поле, с атомами газа. При этом возникает лавинное увеличение числа заряженных частиц, поскольку в процессе ионизации образуются новые электроны...
Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).
Гологра́фия (др.-греч. ὅλος — полный + γράφω — пишу) — набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные. Метод регистрации изображения, основанный на интерференции световых волн.
Магнетрон — электронный прибор, генерирующий микроволны при взаимодействии потока электронов с электрической составляющей сверхвысокочастотного поля в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю.
Ультразву́к — звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 герц.
Акустоо́птика — раздел физики, изучающий взаимодействие оптических и звуковых волн (акустооптическое взаимодействие), а также раздел техники, в рамках которого разрабатываются и исследуются приборы, использующие акустооптическое взаимодействие (акустооптические приборы).
Спектрометр (лат. spectrum от лат. spectare — смотреть и метр от др.-греч. μέτρον — мера, измеритель) — оптический прибор, используемый в спектроскопических исследованиях для накопления спектра, его количественной обработки и последующего анализа с помощью различных аналитических методов. Анализируемый спектр получается путём регистрации флуоресценции после воздействия на исследуемое вещество каким-либо излучением (рентгеновским или лазерным излучением, искровым воздействием и др.). Обычно измеряемыми...
Като́дные лучи ́, также называемые «электронными пучками» — поток электронов, излучаемый катодом вакуумной трубки.
Поляриза́тор — устройство, предназначенное для получения полностью или частично поляризованного оптического излучения из излучения с произвольным состоянием поляризации. В соответствии с типом поляризации, получаемой с помощью поляризаторов, они делятся на линейные и круговые. Линейные поляризаторы позволяют получать плоскополяризованный свет, круговые — свет, поляризованный по кругу.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением (от ~100 эВ до ~1 МэВ), что соответствует длинам волн от ~103,1 до ~10−2 Å (от ~10 до ~10−3 нм).
Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме 380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц).
Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2⋅10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится к ионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков.
Ионизацио́нный калори́метр (от лат. calor — тепло и …метр) в физике элементарных частиц и ядерной физике — прибор, который измеряет энергию частиц. Большинство частиц, попадающих в калориметр, при взаимодействии с его веществом инициируют возникновение вторичных частиц, передавая им часть своей энергии. Вторичные частицы образуют ливень, который поглощается в объёме калориметра и его энергия измеряется с помощью полупроводниковых, ионизационных детекторов, пропорциональных камер, детекторов черенковского...
Сканирующий туннельный микроскоп (СТМ, англ. STM — scanning tunneling microscope) — вариант сканирующего зондового микроскопа, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением.
Упоминания в литературе (продолжение)
Что такое
лазер , знают все; мазеры несколько менее известны. Мазер – это источник когерентного излучения с длиной волны, определяемой разницей соответствующих энергетических уровней молекул рабочего вещества. Поглощая жесткие кванты «накачки», рабочее вещество затем спонтанно излучает кванты совершенно определенной длины волны. В Галактике известно немало «точечных» мазерных источников излучения. «Рабочим веществом» некоторых из них является молекулярный водород Н2, других – гидроксил ОН (в условиях межзвездной газово-пылевой среды могут подолгу существовать молекулы, нестабильные на Земле, и не только гидроксил), а «накачку» осуществляет излучение ядра протозвезды.
Итак, отраженный свет может поляризоваться, то есть происходит упорядочивание колебаний световых волн. Что же из себя представляет упорядоченный свет? Естественный свет хаотичен. Колебания световых волн не упорядочены никоим образом. В естественном неотраженном свете смешаны все длины волн – все цвета радуги. А вот
лазер , например, свет которого поляризован, в отличие от природных источников света генерирует очень чистый свет: упорядоченные световые волны – одной длины – монохроматический свет, одной поляризации – электромагнитные колебания одного направления. Эти колебания когерентные – словно по взмаху дирижерской палочки, они согласованы по времени. Такие свойства, присущие лазеру, стали использовать в терапии различных заболеваний, в том числе офтальмологических.
Во время записи и считывания информации при перемещении луча
лазера от центра к периферии скорость вращения диска уменьшается. Это необходимо для обеспечения возможности считывать и записывать один и тот же объем информации за одно и то же время. Поэтому без применения технологии CLV при воспроизведении, например музыкальных произведений, происходило бы изменение скорости исполнения.
Возможно поэтому воздействие ультразвука на кожу вызывает микровибрацию клеток, которая ведет к нарушению структуры митохондрий и других клеточных структур. Хотя все негативные эффекты, возникающие при воздействии ударной волны ультразвука, – это лишь те последствия, которые можно измерить датчиками современной аппаратуры. Но, как вы уже поняли, энергии нашей жизни функционируют на гораздо более тонком уровне. Поэтому никто не знает, как сказывается в долгосрочной перспективе УЗИ (эхоскопия), применяемое для обследования беременных с целью узнать о здоровье будущего ребенка, или нейросонография (исследование вилочковой железы и головного мозга через еще незажившее отверстие большого родничка, т. е. непосредственное проникновение в мозг), рекламируемая как безопасная диагностика новорожденных. И поэтому каждый раз соотносите необходимость ваших действий с возможными последствиями. Никакой врач не будет отрицать, что антибиотики – не аналог витаминов, и принимать их надо только по назначению и предписанию врача, когда от этого зависит спасение здоровья. Точно так же надо быть осторожными с любыми техногенными излучениями, будь то ультразвук,
лазер , КВЧ или УВЧ, особенно если они воздействуют на жизненно важные органы и особенно – на область головы. Потому что наш мозг имеет невидимую волновую кристаллическую структуру, подобную тем, которыми обладают сахар или соль. Представляете, какие «кордебалеты» выписывает ликвор мозга под ультразвуковым облучением? Ведь его солевой состав представляет собой физиологический раствор.
Жидкие газы находят широкое применение в технике, науке, медицине. Напр., жидкие кислород и водород используются в качестве окислителя и топлива в ракетной технике; жидкие гелий, водород, неон, азот используются для охлаждения
лазеров , чувствительных полупроводниковых приборов, антенн радиотелескопов, сверхпроводящих линий связи и электропередачи; жидкий азот широко применяют для консервации и длительного хранения крови, костного мозга, кровеносных сосудов и пр. Охлаждение обмоток электрических машин, трансформаторов, магнитов позволяет в 5–6 раз уменьшить массу и габаритные размеры этих устройств. Использование соленоидов, сделанных из материалов, сопротивление которых при криогенных температурах падает до нуля (сверхпроводников), позволяет создавать сверхсильные магнитные поля, необходимые для многих физических экспериментов.
Его коллеги, проводившие эксперименты на интерферометре под Ганновером, подтвердили, что шум есть, и он искажает результаты. Хоган посчитал этот шум сигналом больших пикселей с ткани пространства – времени. И тогда для проверки его версии в «Фермилаб» построили своей интерферометр, правда, гораздо меньшего размера, но с более мощным
лазером . Если бы все получилось так, как предполагали сторонники голографической теории, получилось бы, что в основе мироздания лежат не частицы, а волны и их взаимодействие.
Комбинированные методы. В последнее время развиваются методы оценки толщины ледяного покрова с помощью спутниковой альтиметрии –
лазеров и радаров-альтиметров. Луч лазера и луч радара обладают различной способностью проникновения в поверхностный слой снега: лазерный сигнал отражается от поверхности снега, а радарный проходит сквозь слой снега (hs) до поверхности льда. Таким образом, радары-альтиметры измеряют надводную толщину льда, а лазерные альтиметры – расстояние от спутника до верхней границы снежного покрова, находящегося на льду (hf.). Комбинирование этих двух видов измерений позволит более точно оценивать толщину ледяного покрова (hi). Расчет hi. проводят по уравнению плавучести с учетом плотности морской воды (ρw), снега (ρs), и льда (ρi) (Connor et al., 2009):
Между тем количество попыток открыть «дрожь пространственно-временной матрицы» отнюдь не уменьшается, скорее даже наоборот: возникло целое полуофициальное направление экспериментальной астрономии – гравитационно-волновая астрофизика. И хотя эта область науки еще мало освоена, ее исследователи уверенно делают первые решительные шаги, опираясь на многие косвенные данные о гравитационном колебании космоса. К сожалению, сами принципы детектирования волн тяготения требуют создания дорогостоящих циклопических сооружений и систем, на что энтузиасты гравитационного поиска приводят исторические примеры развития фундаментальных областей физики, изменившие лик цивилизации. Действительно, ведь когда-то даже самые светлые энциклопедические умы не осмеливались предсказать, что забавные опыты с «янтарной электрической субстанцией» в конечном итоге приведут к XIX веку пара и электричества, не говоря уже о последующих столетиях атомных электростанций,
лазеров и солнечных батарей.
Лазерная безопасность — совокупность технических, санитарно-гигиенических и организационных мероприятий, обеспечивающих безопасные условия труда персонала при использовании
лазеров (лазерных установок).