Связанные понятия
Корреляция цифровых изображений (англ. digital image correlation and tracking, (DIC/DDIT)) — оптический метод, используемый в техниках отслеживания и идентификации изображения для точных плоских и объемных измерений изменений на изображении. Этот метод часто используется не только для измерения деформаций, полей перемещений и оптических потоков, но и широко используется во многих областях науки и инженерного ремесла. Одно из наиболее широкоизвестных применений данного метода — идентификация перемещений...
Ве́йвлет (англ. wavelet — небольшая волна, рябь), иногда, гораздо реже, вэйвлет — математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием...
Дифракция отражённых электронов (ДОЭ) — микроструктурная кристаллографическая методика, используемая для исследования кристаллографических ориентаций многих материалов, которая может использоваться для исследования текстуры или преимущественных ориентаций моно- или поликристаллического материала. ДОЭ может использоваться для индексирования и определения семи кристаллических систем, также применяется для картирования кристаллических ориентаций, исследования дефектов, определения и разделения фаз...
Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения (см. Выделение границ). Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например, по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.
Подробнее: Сегментация (обработка изображений)
Выделение признаков — это процесс снижения размерности, в котором исходный набор сырых переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных.
Свёрточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения (англ. deep learning). Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого...
Гистограмма направленных градиентов (англ. Histogram of Oriented Gradients, HOG) — дескрипторы особых точек, которые используются в компьютерном зрении и обработке изображений с целью распознавания объектов. Данная техника основана на подсчете количества направлений градиента в локальных областях изображения. Этот метод похож на гистограммы направления края, дескрипторы SIFT и контексты формы, но отличается тем, что вычисляется на плотной сетке равномерно распределенных ячеек и использует нормализацию...
Математическая морфология (ММ) — (морфология от греч. μορφή «форма» и λογία «наука») — теория и техника анализа и обработки геометрических структур, основанная на теории множеств, топологии и случайных функциях. В основном применяется в обработке цифровых изображений, но также может быть применима на графах, полигональной сетке, стереометрии и многих других пространственных структурах.
Слепая деконволюция — метод восстановления изображения без априорной информации о функции размытия точки оптической системы, которая вносит в регистрируемый полезный сигнал шум, искажения и т. п.
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.
Подробнее: Снижение размерности
В обработке сигналов чирплет-преобразование — это скалярное произведение входного сигнала с семейством элементарных математических функций, именуемых чирплетами.
Подробнее: Чирплет
Вейвлетное сжатие — общее название класса методов кодирования изображений, использующих двумерное вейвлет-разложение кодируемого изображения или его частей. Обычно подразумевается сжатие с потерей качества.
Вычислительная гидродинамика (также CFD от англ. computational fluid dynamics) — подраздел механики сплошных сред, включающий совокупность физических, математических и численных методов, предназначенных для вычисления характеристик потоковых процессов.
Томогра́фия (др.-греч. τομή — сечение) — получение послойного изображения внутренней структуры объекта.
Иерархическая кластеризация (также графовые алгоритмы кластеризации и иерархический кластерный анализ) — совокупность алгоритмов упорядочивания данных, направленных на создание иерархии (дерева) вложенных кластеров. Выделяют два класса методов иерархической кластеризации...
Диагра́мма (греч. Διάγραμμα (diagramma) — изображение, рисунок, чертёж) — графическое представление данных линейными отрезками или геометрическими фигурами, позволяющее быстро оценить соотношение нескольких величин. Представляет собой геометрическое символьное изображение информации с применением различных приёмов техники визуализации.
Простра́нственное выра́внивание — способ установления гомологии между двумя или более полимерными структурами на основании их трёхмерной структуры. Этот процесс обычно применяется к третичной структуре белков, но может также использоваться и для больших молекул РНК. В противоположность простому наложению структур, когда известно по крайней мере несколько эквивалентных аминокислотных остатков, пространственное выравнивание не требует никаких предварительных данных, кроме координат атомов.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Мно́жественное выра́внивание после́довательностей (англ. multiple sequence alignment, MSA) — выравнивание трёх и более биологических последовательностей, обычно белков, ДНК или РНК. В большинстве случаев предполагается, что входной набор последовательностей имеет эволюционную связь. Используя множественное выравнивание, можно оценить эволюционное происхождение последовательностей, проведя филогенетический анализ.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Объемный рендеринг — техника, используемая для получения плоского изображения (проекции) трехмерного дискретного набора данных.
Поиск изображений по содержанию (англ. Content-based image retrieval (CBIR)) — раздел компьютерного зрения, решающий задачу поиска изображений, которые имеют требуемое содержание, в большом наборе цифровых изображений.
Амплитудно-фазовая частотная характеристика (АФЧХ) — удобное представление частотного отклика линейной стационарной динамической системы в виде графика в комплексных координатах. На таком графике частота выступает в качестве параметра кривой, фаза и амплитуда системы на заданной частоте представляется углом и длиной радиус-вектора каждой точки характеристики. По сути такой график объединяет на одной плоскости амплитудно-частотную и фазо-частотную характеристики.
Признаки Хаара — признаки цифрового изображения, используемые в распознавании образов. Своим названием они обязаны интуитивным сходством с вейвлетами Хаара. Признаки Хаара использовались в первом детекторе лиц, работающем в реальном времени.
Гидродинамика сглаженных частиц (англ. Smoothed Particle Hydrodynamics, SPH) — вычислительный метод для моделирования динамики жидкости и газов. Используется во многих областях исследований, включая астрофизику, баллистику, вулканологию и океанографию. Метод гидродинамики сглаженных частиц является бессеточным (англ. mesh-free) лагранжевым методом (то есть координаты движутся вместе с жидкостью), и разрешающая способность метода может быть легко отрегулирована относительно переменных, таких как плотность...
Проектирование на основе стандартных ячеек (англ. standard cell) — метод проектирования интегральных схем с преобладанием цифровых элементов. В данном методе наиболее низкий уровень проектирования СБИС скрыт от проектировщика абстрактными логическими элементами (например, узел NAND). Методология проектирования на базе ячеек позволяет одним разработчикам сфокусироваться на высокоуровневом аспекте цифрового дизайна, когда другие разработчики работают над физическими реализациями ячеек. Вместе с достижениями...
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
Видеосемантика — краткое логическое изложение видеоинформации путём разложения её на семантические единицы (видеосюжеты), каждый из которых имеет свой законченный смысл, отличающийся от предыдущего и последующего видеосегмента. Это особое направление видеоаналитики — так называемая гибкая видеоаналитика, не имеющая жестких параметров и точной формализации.
Выравнивание последовательностей — биоинформатический метод, основанный на размещении двух или более последовательностей мономеров ДНК, РНК или белков друг под другом таким образом, чтобы легко увидеть сходные участки в этих последовательностях. Сходство первичных структур двух молекул может отражать их функциональные, структурные или эволюционные взаимосвязи. Выровненные последовательности оснований нуклеотидов или аминокислот обычно представляются в виде строк матрицы. Добавляются разрывы между...
Параметрическое моделирование (параметризация) — моделирование (проектирование) с использованием параметров элементов модели и соотношений между этими параметрами. Параметризация позволяет за короткое время «проиграть» (с помощью изменения параметров или геометрических соотношений) различные конструктивные схемы и избежать принципиальных ошибок.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Цве́товоспроизведе́ние (в полиграфии, цветной фотографии, цветном телевидении и т. д.) — процесс передачи цветов объекта в его цветном изображении.
Метод дискретного элемента (DEM, от англ. Discrete element method) — это семейство численных методов предназначенных для расчёта движения большого количества частиц, таких как молекулы, песчинки, гравий, галька и прочих гранулированных сред. Метод был первоначально применён Cundall в 1971 для решения задач механики горных пород.
Ме́тод вы́борочных обсле́дований — способ определения свойств группы объектов (генеральной совокупности) на основании статистического исследования её части (выборки).
Вейвлет-преобразование (англ. Wavelet transform) — интегральное преобразование, которое представляет собой свертку вейвлет-функции с сигналом. Вейвлет-преобразование переводит сигнал из временного представления в частотно-временное.
Расширяющийся нейронный газ — это алгоритм, позволяющий осуществлять адаптивную кластеризацию входных данных, то есть не только разделить пространство на кластеры, но и определить необходимое их количество исходя из особенностей самих данных. Это новый класс вычислительных механизмов. Количество и расположение искусственных нейронов в пространстве признаков не задается заранее, а вычисляется в процессе обучения моделей в соответствии с особенностями входных данных, самостоятельно подстраиваясь под...
Предсказа́ние втори́чной структу́ры РНК — метод определения вторичной структуры нуклеиновой кислоты по последовательности её нуклеотидов. Вторичную структуру можно предсказывать для единичной последовательности или анализировать множественное выравнивание семейства родственных РНК.
Моде́ль (фр. modèle от лат. modulus «мера, аналог, образец») — это система, исследование которой служит средством для получения информации о другой системе; представление некоторого реального процесса, устройства или концепции.
Размещение патинко (англ. pachinko allocation, PAM) — метод тематического моделирования, применяемый в машинном обучении и обработке естественного языка, позволяющий обнаружить скрытую тематическую структуру в коллекции документов. От более ранних методов (например, LDA) алгоритм отличается тем, что моделирует корреляции между темами в дополнение к корреляциям слов, задающих темы. PAM превосходит LDA по гибкости и выразительной силе. Впервые метод описан, реализован и применён для обработки текстов...
Распознавание по голосу — одна из форм биометрической аутентификации, позволяющая идентифицировать личность человека по совокупности уникальных характеристик голоса. Относится к динамическим методам биометрии. Однако, поскольку голос человека может меняться в зависимости от возраста, эмоционального состояния, здоровья, гормонального фона и целого ряда других факторов, не является абсолютно точным. По мере развития звукозаписывающей и воспроизводящей техники, технология распознавания применяется с...
Самоорганизу́ющаяся ка́рта Ко́хонена (англ. Self-organizing map — SOM) — нейронная сеть с обучением без учителя, выполняющая задачу визуализации и кластеризации. Идея сети предложена финским учёным Т. Кохоненом. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования, выявление наборов независимых признаков, поиска закономерностей в больших массивах данных, разработке...
Динамической геометрией часто называют программные среды, которые позволяют делать геометрические построения на компьютере таким образом, что при движении исходных объектов весь чертёж сохраняется. Активно используется в образовании.
Подробнее: Динамическая геометрия
Конти́нуум в физике обозначает некоторую сплошную среду, в которой исследуются процессы/поведение этой среды при различных внешних условиях. Вводится на основании гипотезы сплошности, в рамках которой пренебрегают структурой исследуемых тел и сред, усредняя их микроструктурные характеристики по физически малому объёму. Непрерывным континуумом можно считать как обычные материальные тела, так и различные поля, например, электромагнитное поле.
Байесовский подход в филогенетике позволяет получить наиболее вероятное филогенетическое дерево при заданных исходных данных, последовательностях ДНК или белков рассматриваемых организмов и эволюционной модели замен. Для снижения вычислительной сложности алгоритма расчёт апостериорной вероятности реализуется различными алгоритмами, использующими метод Монте-Карло для марковских цепей. Главными преимуществами байесовского подхода по сравнению с методами максимального правдоподобия и максимальной экономии...
В твердотельном моделировании и компьютерном проектировании, граничное представление, часто обозначаемое как B-rep или BREP, — способ представления фигур с помощью границ. Твердое тело представляет собой совокупность взаимосвязанных элементов поверхности - границ между телом и окружающим пространством.
Подробнее: Граничное представление