Связанные понятия
Сфери́ческий сегме́нт — поверхность, часть сферы, отсекаемая от неё некоторой плоскостью. Плоскость отсекает два сегмента: меньший сегмент называется также сферическим кругом.
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Плотность упаковки в некотором пространстве — это доля пространства, заполненная упакованными телами (фигурами). В задачах упаковки обычно целью является получение упаковки с максимальной возможной плотностью.
Идеальный треугольник — треугольник в геометрии Лобачевского, все три вершины которого являются идеальными, или бесконечно удалёнными, точками. Идеальные треугольники иногда называют трижды асимптотическими треугольниками. Их вершины иногда называют идеальными вершинами. Все идеальные треугольники равны.
Теорема о гномоне — это геометрическая теорема. Она утверждает, что два параллелограмма в гномоне имеют равную площадь.
Параболические координаты — ортогональная
система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами (для заданного числа n), диаметр которого равен единице (то есть любые две его точки находятся друг от друга на расстоянии, не превосходящем единицы), и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением (не уникальным) для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.
Упаковка тетраэдров — это задача расположения одинаковых правильных тетраэдров в трёхмерном пространстве так, чтобы заполнить как можно большую долю пространства.
Равносторонний многоугольник — многоугольник, у которого все стороны равны. Например, равносторонний треугольник — это треугольник, у которого все три стороны одинаковы; все равносторонние треугольники подобны и имеют внутренние углы 60 градусов. Равносторонний четырёхугольник — это ромб, и квадрат является частным случаем ромба.
Полярный треугольник — понятие сферической геометрии. Полярным для данного сферического треугольника называется такой сферический треугольник, по отношению к сторонам которого вершины данного треугольника являются полюсами.
Гиперцикл ы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Пра́вильный семнадцатиуго́льник — геометрическая фигура, принадлежащая к группе правильных многоугольников. Он имеет семнадцать сторон и семнадцать углов, все его углы и стороны равны между собой, все вершины лежат на одной окружности. Среди других правильных многоугольников с больши́м (больше пяти) простым числом сторон интересен тем, что его можно построить при помощи циркуля и линейки (так, семи-, одиннадцати- и тринадцатиугольники построить циркулем и линейкой нельзя).
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Гиппокра́товы лу́ночки — серповидные фигуры, указанные Гиппократом Хиосским, ограниченные дугами двух окружностей.
Пра́вильный шестисотяче́йник, или просто шестисотяче́йник, или гекзакосихор (от др.-греч. ἑξἀκόσιοι — «шестьсот» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве. Двойственен стодвадцатиячейнику.
Подробнее: Шестисотячейник
Параболическая траектория — в астродинамике и небесной механике кеплерова орбита, эксцентриситет которой равен 1. Если тело удаляется от притягивающего центра, такая орбита называется орбитой ухода, если приближается — орбитой захвата. Иногда подобную орбиту называют орбитой C3 = 0 (см. Характеристическая энергия).
Трубчатая окрестность подмногообразия в многообразии — это открытое множество, окружающее подмногообразие и локально устроенное подобно нормальному расслоению.
В физике и математике, в отрасли динамических систем, двойной маятник — это маятник с другим маятником, прикреплённым к его концу. Двойной маятник является простой физической системой, которая проявляет разнообразное динамическое поведение со значительной зависимостью от начальных условий. Движение маятника руководствуется связанными обыкновенными дифференциальными уравнениями. Для некоторых энергий его движение является хаотическим.
Подробнее: Двойной маятник
Одиннадцатиуго́льник , называемый иногда Гендекаго́н — многоугольник с одиннадцатью углами. Одиннадцатиугольником также называют всякий предмет, имеющий такую форму.
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
В визуализации графов и геометрической теории графов число наклонов графа — это минимальное возможное число различных коэффициентов наклона рёбер в рисунке графа, в котором вершины представляются точками евклидовой плоскости, а рёбрами являются отрезки, которые не проходят через вершины, неинцидентные этим рёбрам.
Подробнее: Число наклонов графа
Касание — свойство двух линий или линии и поверхности иметь в некоторой точке общую касательную прямую или свойство двух поверхностей иметь в некоторой точке общую касательную плоскость.
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Матричная оптика - математический аппарат расчета оптических систем различной сложности.
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Гипотеза Тёплица , также известная как гипотеза о вписанном квадрате — нерешённая проблема геометрии. Формулировка гипотезы...
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Томагавк — это инструмент в геометрии для трисекции угла, задачи разбиения угла на три равные части. Фигура состоит из полукруга и двух отрезков и внешне напоминает томагавк, топор индейцев. Тот же инструмент иногда называли ножом сапожника, однако это название уже широко используется для другой фигуры, арбелоса (треугольник со сторонами в виде полуокружностей).
Большой ромбогексаэдр — это невыпуклый однородный многогранник. Двойственным ему является большой ромбогексакрон. Вершинная фигура — самопересекающийся четырёхугольник.
Уровенная поверхность в геодезии — поверхность, всюду перпендикулярная отвесным линиям. Эта поверхность может как и совпадать с уровнем мирового океана, так и нет. С точки зрения механики, уровенная поверхность есть поверхность равного потенциала силы тяжести и представляет собой фигуру равновесия жидкого или вязкого вращающегося тела, образующегося под действием сил тяжести и центробежных сил.
Веер Кнастера — Куратовского — пример такого связного подмножества плоскости, удаление из которого одной точки делает его вполне несвязным.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
В евклидовой геометрии равнодиагональный четырёхугольник — это выпуклый четырёхугольник, две диагонали которого имеют равные длины. Равнодиагональные четырёхугольники имели важное значение в древней индийской математике, где в классификации в первую очередь выделялись равнодиагональные четырёхугольники, и только потом четырёхугольники подразделялись на другие типы .
Дифференциальное вращение (от лат. differentia – разность, различие) — тип вращения, при котором разные части объекта вращаются вокруг общей оси вращения с различной угловой скоростью. Как правило, наличие дифференциального вращения говорит либо о жидком или газообразном агрегатном состоянии физического тела, либо о «составной» природе объекта или механизма, части которого связаны только посредством оси вращения.
Уравнение Баркера — уравнение, в неявном виде, определяющее зависимость между положением небесного тела (истинной аномалией) и временем, при движении по параболической орбите. Данное уравнение широко применялось при изучении орбит комет, орбиты которых имеют эксцентриситет близкий к единице. В настоящее время это уравнение находит применение в астродинамике...
Релятиви́стское равноуско́ренное движе́ние (или релятивистское равномерно ускоренное движение) — такое движение объекта, при котором его собственное ускорение постоянно. Собственным ускорением называется ускорение объекта в сопутствующей (собственной) системе отсчета, то есть в инерциальной системе отсчёта, в которой текущая мгновенная скорость объекта равна нулю (при этом система отсчёта меняется от точки к точке). Примером релятивистского равноускоренного движения может быть движение тела постоянной...
Фо́рмула Кирхго́фа — аналитическое выражение для решения гиперболического уравнения в частных производных (т. н. «волнового уравнения») во всём трёхмерном пространстве. Методом спуска (то есть уменьшением размерности) из него можно получить решения двумерного (Формула Пуассона) и одномерного (Формула Д’Аламбера) уравнения.
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.
Пятиугольная антипризма — это третья в бесконечном ряду антипризм, образованных чётным набором треугольных сторон и закрытых с обеих сторон двумя многоугольниками. Она состоит из двух пятиугольников, связанных друг с другом кольцом из 10 треугольников, что даёт в сумме 12 граней. Таким образом, многогранник является неправильным додекаэдром.
Центрированное квадратное число — это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки, находящиеся на квадратных слоях.