Связанные понятия
Энтимéма (др.-греч. ἐνθύμημα, от др.-греч. ἐνθύμημαι — «имею в душе») — сокращённoe умозаключение, в котором в явной форме не выражена посылка или заключение, однако пропущенный элемент подразумевается.
Подробнее: Энтимема
Посылка — это утверждение, предназначенное для обоснования или объяснения некоторого аргумента. В логике аргумент — это множество предложений (или «суждений») одни из которых являются посылками, а другие утвердительные предложения (или суждения) — логическими выводами.
Деду́кция (лат. deductio — выведение, также дедуктивное умозаключение, силлогизм) — метод мышления, следствием которого является логический вывод, в котором частное заключение выводится из общего. Цепь умозаключений (рассуждений), где звенья (высказывания) связаны между собой логическими выводами.
Подробнее: Дедуктивное умозаключение
Простой
категорический силлоги́зм (др.-греч. συλ-λογισμός «подытоживание, подсчёт, умозаключение» от συλ- (συν-) «вместе» + λογισμός «счёт, подсчёт; рассуждение, размышление») — дедуктивное умозаключение, состоящее из трёх простых атрибутивных высказываний: двух посылок и одного заключения. Посылки силлогизма разделяются на бо́льшую (которая содержит предикат заключения) и меньшую (которая содержит субъект заключения). По положению среднего термина силлогизмы делятся на фигуры, а последние по логической...
Силлогистика (др.-греч. συλλογιστικός умозаключающий) — теория логического вывода, исследующая умозаключения, состоящие из т. н. категорических высказываний (суждений). В силлогистике рассматриваются, например, выводы заключения из одной посылки (т. н. непосредственные умозаключения), «сложные силлогизмы», или полисиллогизмы, имеющие не менее трёх посылок. Однако основное внимание силлогистика уделяет теории категорического силлогизма, имеющего ровно две посылки и одно заключение указанного вида...
Подробнее: Силлогистические теории
Условно-разделительное умозаключение (также полилемма, лемматическое умозаключение) — умозаключение, посылки которого состоят из одного разделительного суждения и нескольких условных. Частные случаи с двумя и тремя условными высказываниями имеют собственные названия — дилемма и трилемма соответственно.
Традукция (лат. traductio — перемещение) — вид опосредованного умозаключения, в котором посылки и вывод являются суждениями одинаковой степени общности. Традуктивным умозаключением является аналогия. По характеру посылок и вывода традукция может быть трех типов...
Логическая ошибка — в логике, философии и прочих науках, изучающих познание, ошибка, связанная с нарушением логической правильности умозаключений. Ошибочность обусловлена каким-либо логическим недочётом в доказательстве, что делает доказательство в целом неверным.
«Тогда́ и то́лько тогда ́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Парадоксы импликации — это парадоксы, возникающие в связи с содержанием условных утверждений классической логики. Главная функция этих утверждений — обоснование одних утверждений ссылкой на другие.
Инду́кция (лат. inductio — наведение, от лат. inducere — влечь за собой, установить) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления.Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе.
Подробнее: Индуктивное умозаключение
Индуктивное логическое программирование (Inductive Logic Programming, ILP) — раздел машинного обучения, который использует логическое программирование как форму представления примеров, фоновых знаний и гипотез. Получив описания уже известных фоновых знаний и набор примеров, представленных как логическая база фактов, система ILP может породить логическую программу в форме гипотез, объясняющую все положительные примеры и ни одного отрицательного.
Противоположные суждения — так называются два суждения, имеющие одно и то же подлежащее и сказуемое, но различающиеся между собой по количеству или качеству. Если назвать A — общеутвердительные суждения; E — общеотрицательные; I — частноутвердительные; O — частноотрицательные, то можно составить квадрат, на котором все отношения противоположности будут выяснены графически.
Выска́зывание в математической логике — предложение, выражающее суждение. Если суждение, составляющее содержание (смысл) некоторого высказывания, истинно, то и о данном высказывании говорят, что оно истинно. Сходным образом ложным называют такое высказывание, которое является выражением ложного суждения. Истинность и ложность называются логическими, или истинностными, значениями высказываний.Высказывание должно быть повествовательным предложением, и противопоставляются повелительным, вопросительным...
Доказа́тельство — рассуждение по определенным правилам, обосновывающее какое-либо утверждение. В разных областях науки и человеческой деятельности этот термин имеет разные значения.
Саморефере́нция (самоотносимость) — явление, которое возникает в системах высказываний в тех случаях, когда некое понятие ссылается само на себя. Иначе говоря, если какое-либо выражение является одновременно самой функцией и аргументом этой функции.
Логика Бэрроуза — Абади — Нидхэма (англ. Burrows-Abadi-Needham logic) или BAN-логика (англ. BAN logic) — это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов аутентификации.
Логический квадрат — это схематичный способ классификации суждений. Он имеет форму геометрического квадрата, чья система классификации включает все атрибутивные (единичные, общие и частные) суждения. Причем общие и единичные суждения рассматриваются как тождественные объему субъекта.
Логика высказываний , или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Софи́зм (от греч. σόφισμα, «мастерство, умение, хитрая выдумка, уловка») — можно подразделить на...
Импликатура (от лат. implicatio «связь; сплетение, переплетение») — небуквальная часть значения текста, когда информация присутствует в тексте в скрытом виде, но при этом явно не выражается (адресат делает вывод сам), то, что «имелось в виду» (в противоположность тому, что было сказано, или «экспликатуре»). Понятие импликатуры было введено Г. П. Грайсом в 1980-х годах.
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел.
Доказательство «от противного » (лат. contradictio in contrarium) в математике — вид доказательства, при котором «доказывание» некоторого суждения (тезиса доказательства) осуществляется через опровержение отрицания этого суждения — антитезиса. Этот способ доказательства основывается на истинности закона двойного отрицания в классической логике.
Парадокс пьяницы — утверждение, которое утверждает что в любом кабаке существует по крайней мере один такой человек, что если он пьёт, то пьют все (предполагается, что в кабаке есть по крайней мере один человек). Это утверждение, сформулированное в формальной логике, оказывается верным.
Рассуждение — последовательный ряд мыслей и умозаключений в контексте определённой темы, изложенных в логически последовательной форме.
Ана́лиз (др.-греч. ἀνάλυσις «разложение, расчленение») — в философии, в противоположность синтезу, анализом называют логический приём определения понятия, когда данное понятие раскладывают по признакам на составные части, чтобы таким образом сделать познание его ясным в полном его объёме.
Зако́н доста́точного основа́ния — принцип, согласно которому каждое осмысленное выражение (понятие, суждение) может считаться достоверным только в том случае, если оно было доказано, то есть были приведены достаточные основания, в силу которых его можно считать истинным.
Заключе́ние — логическая противоположность основанию в логическом выводе. Суждение, считающееся истинным в том случае, когда истинными признаются его предпосылки.В быту понятие используется примерно с тем же значением, обозначая, в широком смысле, любой предположительно правильный вывод или следствие из чего-нибудь, как, например, во фразе «Я пришел к заключению, что вы были правы» или в выражении «заключение экспертов».
Метало́гика — изучение метатеории логики. В то время, как логика представляет собой исследование способов применения логических систем для рассуждения, доказательств и опровержений, металогика исследует свойства самих логических систем.
Логика Хоара (англ. Hoare logic, также Floyd—Hoare logic, или Hoare rules) — формальная система с набором логических правил, предназначенных для доказательства корректности компьютерных программ. Была предложена в 1969 году английским учёным в области информатики и математической логики Хоаром, позже развита самим Хоаром и другими исследователями. Первоначальная идея была предложена в работе Флойда, который опубликовал похожую систему в применении к блок-схемам (англ. flowchart).
В логике обычно используется много символов для выражения логических сущностей. Поскольку логики знакомы с этими символами, они не объясняют их каждый раз при использовании. Для студентов, изучающих логику, следующая таблица перечисляет большинство общеупотребимых символов вместе с их именами и связанными областями математики. Кроме того, третий столбец содержит неформальное определение, пятый и шестой дают код Unicode и имя для использования в HTML документах.
Подробнее: Список логических символов
Метод Бэкона — индуктивный метод познания, представленный Ф. Бэконом в сочинении «Новый Органон» (1620).
Контекстно-свободная грамматика (КС-грамматика, бесконтекстная грамматика) — частный случай формальной грамматики (тип 2 по иерархии Хомского), у которой левые части всех продукций являются одиночными нетерминалами (объектами, обозначающими какую-либо сущность языка (например: формула, арифметическое выражение, команда) и не имеющими конкретного символьного значения). Смысл термина «контекстно-свободная» заключается в том, что есть возможность применить продукцию к нетерминалу, причём независимо...
Формальная грамматика или просто грамматика в теории формальных языков — способ описания формального языка, то есть выделения некоторого подмножества из множества всех слов некоторого конечного алфавита. Различают порождающие и распознающие (или аналитические) грамматики — первые задают правила, с помощью которых можно построить любое слово языка, а вторые позволяют по данному слову определить, входит ли оно в язык или нет.
Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными, то есть используется так называемая бинарная или двоичная логика, в отличие от, например, троичной логики.
РЕФАЛ (РЕкурсивных Функций АЛгоритмический) — один из старейших функциональных языков программирования, ориентированный на символьные вычисления: обработку символьных строк (например, алгебраические выкладки); перевод с одного языка (искусственного или естественного) на другой; решение проблем, связанных с искусственным интеллектом. Соединяет в себе математическую простоту с практической направленностью на написание больших и сложных программ.
Лемма о накачке (лемма о разрастании, лемма-насос; англ. pumping lemma) — важное утверждение теории автоматов, позволяющее во многих случаях проверить, является ли данный язык автоматным. Поскольку все конечные языки являются автоматными, эту проверку имеет смысл делать только для бесконечных языков. Термин «накачка» в названии леммы отражает возможность многократного повторения некоторой подстроки в любой строке подходящей длины любого бесконечного автоматного языка.
Семантическая информация — смысловой аспект информации, отражающий отношение между формой сообщения и его смысловым содержанием.
Триле́мма (по аналогии с греч. δί-λημμα, дилемма, «двойная лемма», но с приставкой «три-» вместо «ди-») — полемический довод с тремя взаимоисключающими посылками, которые исчерпывают варианты выбора. В обыденной речи использование слова означает, что все варианты выбора трудно принять, и выбор делается по принципу «меньшего из трёх зол»; типичный пример трилеммы из сказок: «поедешь прямо — будешь в холоде и голоде, поедешь направо — коня потеряешь; налево поедешь — сам погибнешь».
Систематическая ошибка согласованности является одним из видов когнитивных искажений, это явление схоже с предвзятостью подтверждения. Систематическая ошибка согласованности происходит из-за чрезмерной увлеченности людей непосредственно исследовать данную гипотезу, пренебрегая косвенным опытом.
Парадокс Греллинга — Нельсона (парадокс Вейля, парадокс Греллинга) — семантический самодескриптивный парадокс, сформулированный в 1908 году Леонардом Нельсоном и Куртом Греллингом и иногда ошибочно приписываемый Герману Вейлю. Похож на ряд аналогичных известных парадоксов, таких как парадокс брадобрея и парадокс Рассела.
Тео́рия дескри́пций (англ. Theory of descriptions) — теория описаний английского математика и философа Бертрана Рассела, известная также как Теория дескрипций Рассела (англ. Russell's Theory of Descriptions (RTD)). Впервые была опубликована в британском академическом журнале Mind за 1905 год и стала самым существенным вкладом Рассела в развитие философии языка.
Задача о двух конвертах (Парадокс двух конвертов) — известный парадокс, демонстрирующий как особенности субъективного восприятия теории вероятностей, так и границы её применимости.
Логическая вероятность — логическое отношение между двумя предложениями, степень подтверждения гипотезы H свидетельством E.
Нисходящий синтаксический анализ (англ. top-down parsing) — это один из методов определения принадлежности входной строки к некоторому формальному языку, описанному LL(k) контекстно-свободной грамматикой. Это класс алгоритмов грамматического анализа, где правила формальной грамматики раскрываются, начиная со стартового символа, до получения требуемой последовательности токенов.
Вывод (лат. conclusio) в логике — процесс рассуждения, в ходе которого осуществляется переход от некоторых исходных суждений (предпосылок) к новым суждениям — заключениям. Вывод может проводиться в несколько этапов—умозаключений.
Двухчастная инвенция (лат. inventio — изобретение, выдумка) Льюиса Кэрролла (другое название — «Что черепаха сказала Ахиллесу», англ. What the Tortoise Said to Achilles) — логический парадокс в форме диалога, описанный Кэрроллом в 1895 году.
Подробнее: Парадокс Кэрролла
Трансдуктивное умозаключение (лат. traductio — перемещение) — умозаключение, в котором посылки и заключение (вывод) являются суждениями одинаковой степени общности, т.е., когда вывод идёт от знания определённой степени общности к новому знанию, но той же степени общности .