Связанные понятия
Математи́ческая стати́стика — наука, разрабатывающая математические методы систематизации и использования статистических данных для научных и практических выводов.
Статистический вывод (англ. statistical inference), также называемый индуктивной статистикой (англ. inferential statistics, inductive statistics) — обобщение информации из выборки для получения представления о свойствах генеральной совокупности.
Стати́стика — отрасль знаний, наука, в которой излагаются общие вопросы сбора, измерения, мониторинга и анализа массовых статистических (количественных или качественных) данных; изучение количественной стороны массовых общественных явлений в числовой форме.
Статистика широко применяется в оценивании программ. Способ, при помощи которого проводится оценка программы и соответствующих относящихся к программе факторов, в большой степени определяет те аналитические методы и статистические показатели, которые будут использоваться в процессе оценивания.
Подробнее: Применение статистики в оценивании
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Ме́тод вы́борочных обсле́дований — способ определения свойств группы объектов (генеральной совокупности) на основании статистического исследования её части (выборки).
Статистическое модели́рование — исследование объектов познания на их статистических моделях. «Статистические модели необходимы для теоретического изучения влияния флуктуаций, шумов и т.п. на процессы. При учёте случайных процессов движение системы будет подчиняться уже не динамическим законам, а законам статистики. В соответствии с этим могут быть поставлены вопросы о вероятности того или иного движения, о наиболее вероятных движениях и о других вероятностных характеристиках поведения системы».Оценка...
Планирование эксперимента (англ. experimental design techniques) — комплекс мероприятий, направленных на эффективную постановку опытов. Основная цель планирования эксперимента — достижение максимальной точности измерений при минимальном количестве проведенных опытов и сохранении статистической достоверности результатов.
Анализ полных наблюдений (англ. listwise/casewise deletion, реже англ. complete-case analysis) — статистический метод обработки пропущенных данных, основанный на удалении всех наблюдений с неполными признаковыми описаниями. Считается самым простым способом разрешения проблемы пропущенных данных.
Временно́й ряд (или ряд динамики) — собранный в разные моменты времени статистический материал о значении каких-либо параметров (в простейшем случае одного) исследуемого процесса. Каждая единица статистического материала называется измерением или отсчётом, также допустимо называть его уровнем на указанный с ним момент времени. Во временном ряде для каждого отсчёта должно быть указано время измерения или номер измерения по порядку. Временной ряд существенно отличается от простой выборки данных, так...
Выборка или выборочная совокупность — часть генеральной совокупности элементов, которая охватывается экспериментом (наблюдением, опросом).
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Удобная выборка — один из видов невероятностной выборки, представляет собой результат отбора образцов из генеральной совокупности, при котором процедура выборки соответствует общим требованиям проведения исследования, при этом не предъявляя требования к репрезентативности выборки и оценки вероятности. Как правило критерии выборки определяются исходя из удобства проведения процедуры выборки...
Трансдуктивное обучение (англ. transductive inference) — полу-контролируемое обучение (частичное обучение), обучение с частичным привлечением учителя, когда прогноз предполагается делать только для прецедентов из тестовой выборки.
Проблема Гальтона , названная в честь сэра Фрэнсиса Гальтона, представляет собой проблему выведения заключений из кросс-культурных данных на основании статистического феномена, известного на сегодняшний день как сетевая автокорреляция. В настоящее время проблема признается проблемой общего характера, которая применяется ко всем неэкспериментальным исследованиям, а также к экспериментальному проектированию. Ее можно наиболее просто описать как проблему внешних зависимостей при проведении статистических...
Прогно́з (от греч. πρόγνωση «предвидение, предсказание») — это научно обоснованное суждение о возможных состояниях объекта в будущем и (или) об альтернативных путях и сроках их осуществления. В узком смысле, это вероятностное суждение о будущем состоянии объекта исследования.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
Психометри́я (психометрика) — дисциплина психологии, изучающая теорию и методику психологических измерений, включая измерение знаний, способностей, взглядов и качеств личности. Психометрия является разделом психодиагностики. В первую очередь, эта область касается создания и валидации измерительных инструментов, таких как опросники, тесты и методики описания (оценки) личности. Она включает в себя две основные исследовательские задачи, а именно...
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Обучение на примерах (англ. Learning from Examples) - вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Шкала (измерительная шкала) — это знаковая система, для которой задано отображение (операция измерения), ставящее в соответствие реальным объектам (событиям) тот или иной элемент (значение) шкалы. Формально шкалой называют кортеж,
, где X — множество реальных объектов (событий), φ — отображение, Y — множество элементов (значений) знаковой системы.
Информационный критерий — применяемая в эконометрике (статистике) мера относительного качества эконометрических (статистических) моделей, учитывающая степень «подгонки» модели под данные с корректировкой (штрафом) на используемое количество оцениваемых параметров. То есть критерии основаны на неком компромиссе между точностью и сложностью модели. Критерии различаются тем, как они обеспечивают этот баланс.
Прикладные исследования — научные исследования, направленные на практическое решение технических и социальных проблем.
Вероятностный латентно-семантический анализ (ВЛСА), также известный как вероятностное латентно-семантическое индексирование (ВЛСИ, особенно в области информационного поиска) — это статистический метод анализа корреляции двух типов данных. Данный метод является дальнейшим развитием латентно-семантического анализа. ВЛСА применяется в таких областях как информационный поиск, обработка естественного языка, машинное обучение и смежных областях.
Эконометрика — наука, изучающая количественные и качественные экономические взаимосвязи с помощью математических и статистических методов и моделей. Современное определение предмета эконометрики было выработано в уставе Эконометрического общества, которое главными целями назвало использование статистики и математики для развития экономической теории. Теоретическая эконометрика рассматривает статистические свойства оценок и испытаний, в то время как прикладная эконометрика занимается применением эконометрических...
Планирование эксперимента — один из важнейших этапов организации психологического исследования, на котором исследователь пытается сконструировать наиболее оптимальную для воплощения на практике модель (то есть план) эксперимента.
Кластерный анализ (англ. cluster analysis) — многомерная статистическая процедура, выполняющая сбор данных, содержащих информацию о выборке объектов, и затем упорядочивающая объекты в сравнительно однородные группы. Задача кластеризации относится к статистической обработке, а также к широкому классу задач обучения без учителя.
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Синтетический контроль (англ. Synthetic control method, SCM) — эконометрический метод анализа данных в рамках причинно-следственной модели Рубина, позволяющий проводить каузальную инференцию в сравнительных кейс-стади. Метод направлен на оценку эффектов исследуемого воздействия (например, экономической реформы) на примере небольшого числа кейсов с помощью моделирования их количественных показателей в гипотетической ситуации, где воздействие не было оказано, на основе ограниченного круга похожих контрольных...
Описательная статистика или дескриптивная статистика (англ. descriptive statistics) занимается обработкой эмпирических данных, их систематизацией, наглядным представлением в форме графиков и таблиц, а также их количественным описанием посредством основных статистических показателей.
Информационный критерий Акаике (AIC) — критерий, применяющийся исключительно для выбора из нескольких статистических моделей. Разработан в 1971 как «an information criterion» («(некий) информационный критерий») Хироцугу Акаике и предложен им в статье 1974 года.
Теоретическая выборка (англ. theoretical sampling), или теоретический отбор — процесс сбора данных для теории, когда аналитик одновременно собирает, кодирует, анализирует и сравнивает свои данные между собой. Он также решает, какие данные собирать дальше и где их искать, чтобы развивать свою теорию по мере ее возникновения . Исследователь выбирает какую-либо общую проблемную область и начинает с определения некоторых ключевых понятий и особенностей, которые будут им анализироваться. При этом важно...
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.
Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Расчёт надёжности — процедура определения значений показателей надежности объекта с использованием методов, основанных на их вычислении по справочным данным о надежности элементов объекта, по данным о надежности объектов-аналогов, данным о свойствах материалов и другой информации, имеющейся к моменту расчета.
Эмпирическая модель — разновидность моделей, основу которой составляют результаты анализа некоторого объема данных (информации), полученных в результате эксперимента или измерений. Результатом подобного анализа, как правило, являются вывод (создание) новых формул, уравнений, закономерностей, корреляционных зависимостей, описывающих связь между рассматриваемыми величинами. Результатом также может являться некоторый массив данных, представляющий собой эталон, с которым в дальнейшем будут сравниваться...
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики (например, математического анализа или аналитической геометрии), у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году...
Случайные числа — искусственно полученная последовательность реализаций случайной величины с заданным законом распределения.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Тестирование чёрного ящика или поведенческое тестирование — стратегия (метод) тестирования функционального поведения объекта (программы, системы) с точки зрения внешнего мира, при котором не используется знание о внутреннем устройстве тестируемого объекта. Под стратегией понимаются систематические методы отбора и создания тестов для тестового набора. Стратегия поведенческого теста исходит из технических требований и их спецификаций.
Обуче́ние ранжи́рованию (англ. learning to rank или machine-learned ranking, MLR) — это класс задач машинного обучения с учителем, заключающихся в автоматическом подборе ранжирующей модели по обучающей выборке, состоящей из множества списков и заданных частичных порядков на элементах внутри каждого списка. Частичный порядок обычно задаётся путём указания оценки для каждого элемента (например, «релевантен» или «не релевантен»; возможно использование и более, чем двух градаций). Цель ранжирующей модели...
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Контент-ана́лиз (от англ.: англ. contents — содержание, содержимое) или ана́лиз содержа́ния — стандартная методика исследования в области общественных наук, предметом анализа которой является содержание текстовых массивов и продуктов коммуникативной корреспонденции.