Связанные понятия
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Градиентные методы — численные методы решения с помощью градиента задач, сводящихся к нахождению экстремумов функции.
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).
Подробнее: Предельное правдоподобие
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
В математической статистике
критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок). Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
В статистике, дельта-методом называется результат, описывающий вероятностное распределение функции от асимптотически нормальной статистической оценки при известной асимптотической дисперсии этой оценки.
Подробнее: Дельта-метод
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Разностная схема — это конечная система алгебраических уравнений, поставленная в соответствие какой-либо дифференциальной задаче, содержащей дифференциальное уравнение и дополнительные условия (например краевые условия и/или начальное распределение). Таким образом, разностные схемы применяются для сведения дифференциальной задачи, имеющей континуальный характер, к конечной системе уравнений, численное решение которых принципиально возможно на вычислительных машинах. Алгебраические уравнения, поставленные...
Вариационный метод — метод решения математических задач с помощью минимизации определённого функционала, используя пробную функцию, которая зависит от небольшого количества параметров.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Информационное неравенство (математическая статистика) — неравенство для несмещённой оценки с локально минимальной дисперсией, задающее нижнюю границу для величины дисперсии этой оценки. Играет важную роль в теории асимптотически эффективных оценок.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
Аппроксима́ция (от лат. proxima — ближайшая) или приближе́ние — научный метод, состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Фи́льтр Ка́лмана — эффективный рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений. Назван в честь Рудольфа Калмана.
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Статистические оценки — это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины.
Система одновременных уравнений — совокупность эконометрических уравнений (часто линейных), определяющих взаимозависимость экономических переменных. Важным отличительным признаком системы «одновременных» уравнений от прочих систем уравнений является наличие одних и тех же переменных в правых и левых частях разных уравнений системы (речь идет о так называемой структурной форме модели, см. ниже).
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
В статистической термодинамике энтропия Цаллиса — обобщение стандартной энтропии Больцмана—Гиббса, предложенное Константино Цаллисом (Constantino Tsallis) в 1988 г. для случая неэкстенсивных (неаддитивных) систем. Его гипотеза базируется на предположении, что сильное взаимодействие в термодинамически аномальной системе приводит к новым степеням свободы, к совершенно иной статистической физике небольцмановского типа.
В математической статистике неравенством Краме́ра — Ра́о (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая её через информацию Фишера. Известно его обобщение в квантовой теории оценивания (квантовое неравенство Крамера — Рао).
Метод спектрального элемента (МСЭ) для решения дифференциальных уравнений в частных производных — это метод конечных элементов, в котором используются кусочные многочлены высокой степени в качестве базисных функций. Метод спектрального элемента предложил в статье 1984 года Т. Патера.
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Лине́йность по пара́метрам — свойство экономических моделей, позволяющее рассматривать их с эконометрической точки зрения (с точки зрения оценки параметров) как линейные модели.
Уравнение Орнштейна — Цернике — интегральное уравнение статистической механики для определения прямой корреляционной функции. Оно описывает, как может быть рассчитана корреляция между двумя молекулами, точнее корреляция плотности между двумя точками. Применение в основном обнаруживается в теории жидкости.
Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Регрессия Деминга эквивалентна оценке максимального правдоподобия на модели с ошибками в переменных, в которой ошибки двух переменных считаются независимыми и имеют нормальное распределение, а отношение их дисперсий, δ, известно . На практике это отношение может быть оценено из исходных данных. Однако процедура регрессии не принимает во внимание возможные ошибки в оценке отношений дисперсии.
Модель упорядоченного выбора (упорядоченная регрессия, англ. ordered choice) — применяемая в эконометрике модель с упорядоченной (с ранжированными значениями) дискретной зависимой переменной, в качестве которой могут выступать, например, оценки чего-либо по пятибалльной шкале, рейтинги компаний и т. д. В рамках данной модели предполагается, что количество значений зависимой переменной конечно.