Связанные понятия
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Выброс (англ. outlier), промах — в статистике результат измерения, выделяющийся из общей выборки.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.
Т-критерий Вилкоксона — (также используются названия Т-критерий Уилкоксона, критерий Вилкоксона, критерий знаковых рангов Уилкоксона, критерий суммы рангов Уилкоксона) непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных или независимых измерений по уровню какого-либо количественного признака, измеренного в непрерывной или в порядковой шкале.. Впервые предложен Фрэнком Уилкоксоном. Другие названия — W-критерий Вилкоксона, критерий знаковых...
Подробнее: Критерий Уилкоксона
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Поиском
наилучшей проекции (англ. Projection Pursuit) называется статистический метод, состоящий в нахождении такой проекции многомерных данных, для которой достигает максимума некоторая функция качества проекции.
В статистике
степенной закон (англ. power law) - это такая функциональная зависимость между двумя величинами, при которой относительное изменение одной величины приводит к пропорциональному относительному изменению другой величины, независимо от исходных значений этих величин: зависимость одной величины от другой представляет собой степенную функцию. Например, рассмотрим зависимость площади квадрата от длины его стороны. Если длина будет увеличена вдвое, то площадь увеличится вчетверо.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.
Для определения средних или наиболее типичных значений совокупности используются показатели центра распределения. Основные из них — математическое ожидание, среднее арифметическое, среднее геометрическое, среднее гармоническое, среднее степенное, взвешенные средние, центр сгиба, медиана, мода.
Подробнее: Показатели центра распределения
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Ядерная оценка плотности (ЯОП, англ. Kernel Density Estimation, KDE) — это непараметрический способ оценки плотности случайной величины. Ядерная оценка плотности является задачей сглаживания данных, когда делается заключение о совокупности, основываясь на конечных выборках данных. В некоторых областях, таких как обработка сигналов и математическая экономика, метод называется также методом окна Парзена-Розенблатта. Как считается, Эммануэль Парзен и Мюррей Розенблатт независимо создали метод в существующем...
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.
Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях. В отличие от t-критерия, позволяет сравнивать средние значения трёх и более групп. Разработан Р. Фишером для анализа результатов экспериментальных исследований. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of VAriance).
Гистогра́мма (от др.-греч. ἱστός— столб + γράμμα — черта, буква, написание) — способ графического представления табличных данных.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Статистический критерий — строгое математическое правило, по которому принимается или отвергается та или иная статистическая гипотеза с известным уровнем значимости. Построение критерия представляет собой выбор подходящей функции от результатов наблюдений (ряда эмпирически полученных значений признака), которая служит для выявления меры расхождения между эмпирическими значениями и гипотетическими.
Погрешность измерения — отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу , характеризующееся тем, что плотность вероятности на этом интервале постоянна.
Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Качественная, дискретная, или категорийная переменная — это переменная, которая может принимать одно из ограниченного и, обычно, фиксированного числа возможных значений, назначая каждую единицу наблюдения определённой группе или номинальной категории на основе некоторого качественного свойства. В информатике и некоторых других ветвях математики качественные переменные называются перечислениями или перечисляемыми типами. Обычно (хотя не в этой статье), каждое из возможных значений качественной переменной...
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Генеральная совокупность (от лат. generis — общий, родовой) — совокупность всех объектов (единиц), относительно которых предполагается делать выводы при изучении конкретной задачи.
Состоя́тельная оце́нка в математической статистике — это точечная оценка, сходящаяся по вероятности к оцениваемому параметру.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Сре́днее значе́ние — числовая характеристика множества чисел или функций (в математике); — некоторое число, заключённое между наименьшим и наибольшим из их значений.
Независимая переменная — в эксперименте переменная, которая намеренно манипулируется или выбирается экспериментатором с целью выяснить её влияние на зависимую переменную.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Спектра́льная пло́тность мо́щности (СПМ) в физике и обработке сигналов — функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Имеет размерность мощности, делённой на частоту, то есть энергии. Например, в Международной системе единиц (СИ): Вт/Гц = Вт/с−1 = Вт·с.
Авторегрессионная условная гетероскедастичность (англ. ARCH; AutoRegressive Conditional Heteroscedasticity) — применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых), у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время...