Связанные понятия
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц.
В математике квадра́тная ма́трица — это матрица, у которой число строк совпадает с числом столбцов, и это число называется порядком матрицы. Любые две квадратные матрицы одинакового порядка можно складывать и умножать.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Биномиальное преобразование — последовательность преобразований или же преобразование последовательности, которая вычисляет её конечные разности. Понятие биномиального преобразования тесно связано с преобразованием Эйлера, которое является результатом применения биномиального преобразования к последовательности.
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают...
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
Формула Вика — формула теории вероятностей, выражающая математическое ожидание многочлена от координат гауссовского вектора через элементы матрицы ковариаций. Одним из её применений является связь между средним значением полинома от следов степеней случайной матрицы большого размера и родами поверхностей, получаемыми склейкой заданных многоугольников при различных отождествлениях сторон.
В линейной алгебре обобщенное сингулярное разложение (ОСР) или обобщенное разложение по сингулярным значениям (GSVD - generalized singular value decomposition) — это разбиение прямоугольной матрицы с учетом ограничений, накладываемых на строки и столбцы матрицы. ОСР дает взвешенную обобщенную оценку наименьших квадратов данной матрицы с помощью матрицы более низкого ранга и, следовательно, при адекватном выборе ограничений ОСР реализует все линейные многомерные методы (например, каноническую корреляцию...
Подробнее: Обобщённое сингулярное разложение
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Псевдопреобразова́ние Адама́ра (англ. Pseudo-Hadamard Transform, PHT) — обратимое преобразование битовых строк, используемое в криптографии для обеспечения диффузии при шифровании. Количество бит на входе преобразования должно быть чётным, чтобы было возможным разделение строки на две части равной длины. Создателем преобразования является французский математик Жак Адамар.
Алгебраическая сложность — раздел теории сложности вычислений, имеющий дело с полиномами. Был создан в основном благодаря работам Ф. Штрассена.
Бикватернион ы — комплексификация (расширение) обычных (вещественных) кватернионов.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Теорема о приведении матрицы к диагональной форме — утверждение о возможности приведения любой вещественной квадратной матрицы к диагональному виду при помощи умножения на две вещественные ортогональные матрицы. Допускает обобщение на случай любой вещественной матрицы. Имеет большое значение в линейной алгебре и вычислительной математике.
Скобка Мояля была введена в 1940 году Хосе Энрике Моялем, но ему удалось опубликовать свою работу только в 1949 году после долгих споров с Полем Дираком.. В то же время эта идея была независимо высказана в 1946 году Хипом Груневолдом в докторской диссертации.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Подробнее: Алгоритм вычисления собственных значений
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
В линейной алгебре положи́тельно определённая ма́трица — это эрмитова матрица, которая во многом аналогична положительному вещественному числу. Это понятие тесно связано с положительно определённой симметрической билинейной формой (или полуторалинейной формой в случае с комплексными числами).
Ковариа́нтность и контравариа́нтность — используемые в математике (линейной алгебре, дифференциальной геометрии, тензорном анализе) и в физике понятия, характеризующие то, как тензоры (скаляры, векторы, операторы, билинейные формы и т. д.) изменяются при преобразованиях базисов в соответствующих пространствах или многообразиях. Контравариантными называют «обычные» компоненты, которые при смене базиса пространства изменяются с помощью преобразования, обратного преобразованию базиса. Ковариантными...
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения...
Тождества Фирца — тождества линейной алгебры, связывающие различные выражения в виде произведений матриц Паули, матриц Гелл-Манна и матриц Дирака, различающиеся между собой перестановкой индексов. Используются в теоретической физике.
Скаля́р (от лат. scalaris — ступенчатый) — величина, полностью определяемая в любой координатной системе одним числом или функцией, которое не меняется при изменении пространственной системы координат. В математике под «числами» могут подразумеваться элементы произвольного поля, тогда как в физике имеются в виду действительные или комплексные числа. О функции, принимающей скалярные значения, говорят как о скалярной функции.
Алгоритм Риша — алгоритм для аналитического вычисления неопределённых интегралов, использующий методы дифференциальной алгебры. Он базируется на типе интегрируемой функции и на методах интегрирования рациональных функций, корней, логарифмов, и экспоненциальных функций.
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
Преобразование последовательностей — оператор, действующий на пространстве последовательностей. Преобразование последовательностей включает в себя такие понятия, как свёртка одной последовательности с другой, их суммирование и биномиальные преобразования, а также преобразования Мёбиуса и Стрилинга. Преобразования последовательности могут использоваться для ускорения сходимости ряда.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Дискретное преобразование Фурье (в англоязычной литературе DFT, Discrete Fourier Transform) — это одно из преобразований Фурье, широко применяемых в алгоритмах цифровой обработки сигналов (его модификации применяются в сжатии звука в MP3, сжатии изображений в JPEG и др.), а также в других областях, связанных с анализом частот в дискретном (к примеру, оцифрованном аналоговом) сигнале. Дискретное преобразование Фурье требует в качестве входа дискретную функцию. Такие функции часто создаются путём дискретизации...
Метри́ческий те́нзор , или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.
Подробнее: Кэлеров дифференциал
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Символ оператора — функция, ассоциированная с оператором и отражающая те или иные его свойства. Как правило символы задаются для операторов, принадлежащих некоторой алгебре. В таком случае отображение из элементов алгебры в их символы является линейным, то есть при сложении операторов и их умножении на число соответствующие символы также складываются и умножаются на то же число. При умножении операторов их символы обычно умножаются с точностью до членов, считающихся в определённом смысле младшими...
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Аффи́нное преобразование , иногда Афинное преобразование (от лат. affinis «соприкасающийся, близкий, смежный») — отображение плоскости или пространства в себя, при котором параллельные прямые переходят в параллельные прямые, пересекающиеся — в пересекающиеся, скрещивающиеся — в скрещивающиеся.
Интеграл Даниеля — одно из обобщений интеграла Римана, альтернативное понятию интеграла Лебега.
Лине́йная интерполя́ция — интерполяция алгебраическим двучленом P1(x) = ax + b функции f, заданной в двух точках x0 и x1 отрезка . В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.
Метод простой итерации — один из простейших численных методов решения уравнений. Метод основан на принципе сжимающего отображения, который применительно к численным методам в общем виде также может называться методом простой итерации или методом последовательных приближений. В частности, для систем линейных алгебраических уравнений существует аналогичный метод итерации.
Бра и кет (англ. bra-ket < bracket скобка) — алгебраический формализм (система обозначений), предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой.
В математике инвариант Парри — Салливана (или число Парри — Салливана) — это числовое значение, представляющее интерес при изучении матриц инцидентности в теории графов и некоторых одномерных динамических систем. Инвариант даёт частичную классификацию нетривиальных неприводимых матриц инцидентности.