Связанные понятия
Разделённая квадратная мозаика (или тетракис-квадратная мозаика — это мозаика в евклидовой плоскости, которая строится из квадратной мозаики путём деления каждого квадрата на четыре равнобедренных прямоугольных треугольника с вершинами в центрах квадратов, в результате чего образуется бесконечная конфигурация прямых. Мозаика может быть также построена путём деления каждого квадрата решётки на два треугольника диагональю, при этом диагонали соседних квадратов имеют различное направление. Мозаику можно...
Купол можно рассматривать как призму, где один из многоугольников наполовину стянут путём объединения вершин попарно.
Квадратная решётка — это вид решётки в двумерном евклидовом пространстве. Решётка является двумерной версией целочисленной решётки и обозначается Z2. Решётка является одной из пяти типов двумерных решёток, классифицированных по группам симметрии, Группа симметрии решётки в обозначениях IUC — p4m, в нотации Коксетера — , а в орбифолдной нотации — *442.
Центр подобия (или центр гомотетии) — это точка, из которой по меньшей мере две геометрически подобные фигуры можно видеть как масштабирование (растяжение/сжатие) друг друга. Если центр внешний, две фигуры похожи друг на друга прямо — их углы одни и те же в смысле вращения. Если центр внутренний, две фигуры являются изменёнными в размерах отражениями друг друга — их углы противоположны.
Треуго́льник Рёло ́ представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло.
В геометрии треугольная призма — это призма с тремя боковыми гранями. Этот многогранник имеет в качестве граней треугольное основание, его копию, полученную в результате параллельного переноса и 3 грани, соединяющие соответствующие стороны. Прямая треугольная призма имеет прямоугольные боковые стороны, в противном случае призма называется косой.
Группа орнамента (или группа плоской симметрии, или плоская кристаллографическая группа) — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Начерта́тельная геоме́трия — инженерная дисциплина, представляющая двумерный геометрический аппарат и набор алгоритмов для исследования свойств геометрических объектов.
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.
Кристаллографическая точечная группа симметрии — это точечная группа симметрии, которая описывает макросимметрию кристалла. Поскольку в кристаллах допустимы оси (поворотные и несобственного вращения) только 1, 2, 3, 4 и 6 порядков, из всего бесконечного числа точечных групп симметрии только 32 относятся к кристаллографическим.
Тришестиугольная мозаика — это одна из 11 однородных мозаик на евклидовой плоскости из правильных многоугольников. Мозаика состоит из правильных треугольников и правильных шестиугольников, расположенных так, что каждый шестиугольник окружён треугольниками, и наоборот. Название мозаики вызвано тем фактом, что она комбинирует правильную шестиугольную мозаику и правильную треугольную мозаику. Два шестиугольника и два треугольника чередуются вокруг каждой вершины, а рёбра образуют бесконечную конфигурацию...
Куб принца Руперта (англ. Prince Rupert’s cube) — самый большой куб, который может пройти через отверстие, вырезанное в единичном кубе (то есть через куб, рёбра которого имеют размер 1). Ребро куба Руперта приблизительно на 6 % длиннее, чем ребро куба, через который он проходит. Задача поиска такого куба тесно связана с задачей поиска самого большего квадрата, который полностью расположен в пределах единичного куба, и имеет аналогичное решение.
В геометрии конфигурацией
Паппа называется конфигурация девяти точек и девяти прямых на евклидовой плоскости, по три точки на прямой и через каждую точку проходят три прямые.
В геометрии конфигурацией
Дезарга называется конфигурация десяти точек и десяти прямых, в которой каждая прямая содержит три точки конфигурации, и через любую точку проходят три прямых. Конфигурация названа в честь Жерара Дезарга и она тесно связана с теоремой Дезарга, которая доказывает существование таких конфигураций.
Срединная ось фигуры является геометрическим объектом, представляющим собой геометрическое место точек плоскости, равноудаленных от границы фигуры (то есть имеющих, по крайней мере, две ближайшие точки на границе фигуры).
Отражение , зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью).
Сферический треугольник — геометрическая фигура на поверхности сферы, состоящая из трёх точек и трёх дуг больших кругов, соединяющих попарно эти точки. Три больших круга на поверхности сферы, не пересекающихся в одной точке, образуют восемь сферических треугольников. Соотношения между элементами сферических треугольников изучает сферическая тригонометрия.
Полный четырёхугольник (иногда употребляется термин полный четырёхвершинник) — это система геометрических объектов, состоящая из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, и шести прямых, соединяющих шесть пар точек. Конфигурация, двойственная к полному четырёхугольнику — полный четырёхсторонник — является системой из четырёх прямых, никакие три из которых не проходят через одну точку, и шести точек пересечения этих прямых. Лахлан для полного четырёхугольника...
Треугольник Шварца представляется тремя рациональными числами (p q r), каждое из которых задаёт угол в вершине. Значение n/d означает, что угол в вершине треугольника равен d/n развёрнутого угла. 2 означает прямоугольный треугольник. Если эти числа целые, треугольник называется треугольником Мёбиуса и он соответствует мозаике без перекрытий, а группа симметрии называется группой треугольника. На сфере имеется 3 треугольника Мёбиуса и ещё одно однопараметрическое семейство. На плоскости имеется три...
Сфе́ра (др.-греч. σφαῖρα «мяч, шар») — это геометрическое место точек в пространстве, равноудаленных от некоторой заданной точки (центра сферы).
Простой многоугольник — это фигура, состоящая из непересекающихся отрезков («сторон»), соединённых попарно с образованием замкнутого пути. Если стороны пересекаются, многоугольник не является простым. Часто слово «простой» опускается из вышеприведённого определения.
Символы Германа — Могена используются для обозначения симметрии точечных групп (наряду с символами Шёнфлиса), плоских групп и пространственных групп. Были предложены немецким кристаллографом Карлом Германом (англ. Carl Hermann) в 1928 году и модифицированы французским минералогом Шарлем-Виктором Могеном (фр. Charles Victor Mauguin) в 1931 году. Также называются международными символами, поскольку используются в Интернациональных Таблицах по Кристаллографии (International Tables for Crystallography...
Пирами́да (др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Сапог Шварца (от нем. Schwarzscher Stiefel) — семейство приближений кругового цилиндра с помощью полиэдральных поверхностей.
В геометрии
плосконосый двуклиноид или сиамский додекаэдр — это трёхмерный выпуклый многогранник с двенадцатью правильными треугольниками в качестве граней. Многогранник не является правильным, поскольку в некоторых вершинах сходятся четыре грани, а в остальных — пять граней. Многогранник является двенадцатигранником, одним из восьми дельтаэдров (выпуклых многогранников с гранями в виде правильных треугольников) и одним из 92 многогранников Джонсона (неоднородные выпуклые многогранники с правильными...
Говорят, что два и более объектов концентричны или коаксиальны, если они имеют один и тот же центр или ось. Окружности, правильные многоугольники, правильные многогранники и сферы могут быть концентричны друг другу (имея одну и ту же центральную точку), как могут быть концентричными и цилиндры (имея общую коаксиальную ось).
Подробнее: Концентричные объекты
Десмическая структура — это набор из трёх тетраэдров в 3-мерном проективном пространстве, такой, что любые два тетраэдра десмичны, (т.е. любое ребро одного тетраэдра пересекает пару противоположных рёбер другого). Структуру придумал Стефанос. Три тетраэдра десмической структуры содержатся в пучке поверхностей четвертого порядка. Название «десмический» заимствовано из греческого (δεσμός) и означает связку или цепочку.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
В геометрии
построение Витхоффа , или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.
Четырёхугольник (греч. τετραγωνον) — это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), последовательно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.). Четырёхугольник без самопересечений называется простым, часто под термином «четырёхугольник» имеется в виду только простые четырёхугольники.
В геометрии
ромбическая мозаика , кантующиеся блоки, обратимые кубы или кубическая решётка — это мозаика одинаковых ромбов с углом 60° на евклидовой плоскости. Каждый ромб имеет два угла 60° и два 120°. Такие ромбы иногда называют диамондами. Множества из трёх ромбов соприкасаются вершинами с углом 120°, а множества из шести — вершинами с углом 60°.
Перспектива в геометрии — способ изображения фигур, основанный на применении центрального проектирования.
Квазитриангуляция — структура разбиения плоскости, обладающая свойствами триангуляции Делоне, но вершинами которой служат не точки, а произвольно наклонённые отрезки. Строго говоря, это разбиение не является триангуляцией в геометрическом смысле, то есть разбиением плоскости на треугольные грани, но является триангуляцией в топологическом смысле.
Параллелогон — многоугольник, замощающий пространство с использованием лишь параллельного переноса, при этом стороны параллелогонов совмещаются по целым сторонам.
Исчезновение клетки (появление клетки) — известный класс задач (оптических иллюзий) на перестановку фигур, обладающих признаками софизмов: изначально в их условие введена замаскированная ошибка. Некоторые из этих задач тесно связаны со свойствами последовательности чисел Фибоначчи.
Пра́вильный двадцатичетырёхъяче́йник, или просто двадцатичетырёхъяче́йник, или икоситетрахор (от др.-греч. εἴκοσι — «двадцать», τέτταρες — «четыре» и χώρος — «место, пространство»), — один из правильных многоячейников в четырёхмерном пространстве.
Подробнее: Двадцатичетырёхъячейник
Клин является подклассом призматоидов, если рассматривать верхнее ребро как вырожденную грань (у призматоидов две грани параллельны).
Тессера́кт (от др.-греч. τέσσαρες ἀκτῖνες «четыре луча») — четырёхмерный гиперкуб — куб в четырёхмерном пространстве. Другие названия: 4-куб, тетраку́б (от др.-греч. τέτταρες «четыре»), восьмияче́йник, октахо́р (от др.-греч. οκτώ «восемь» + χώρος «место, пространство»), гиперкуб (если число измерений не оговаривается).
Сотовый свод , мукарны, мукарнасы (перс. مقرنس, исп. muqarnas от араб. مقرنص), сталактиты — характерный элемент традиционной арабской и персидской архитектуры; разновидность складчатого свода из замкнутых перегороженных складок в виде ромбических гранёных впадин-гексагонов, пирамидальных углублений, похожих на восковые пчелиные соты или на сталактиты.
В геометрии центральные прямые — это некоторые специальные прямые, связанные с треугольником и лежащие в плоскости треугольника. Особое свойство, которое отличает прямые как пифагоров триеугольникцентральные прямые проявляется через уравнение прямой в основе фиботаччи трилинейных координатах. Это особое свойство также связано с понятием центр треугольника. Понятие центральной прямой было введено Кларком Кимберлингом в статье, опубликованной в 1994 году.
Подробнее: Центральная прямая
В геометрии конфигурацией
Мёбиуса или тетраэдрами Мёбиуса называется конфигурация в евклидовом пространстве или проективном пространстве, состоящая из двух взаимно вписанных тетраэдров — каждая вершина одного тетраэдра лежит на плоскости, проходящей через грань другого тетраэдра и наоборот. Таким образом, в результирующей системе восьми точек и восьми плоскостей каждая точка лежит на четырёх плоскостях (три плоскости определяют вершину тетраэдра, а четвёртая плоскость — это плоскость, проходящая...
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади).
Парке́т или замощение — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.
Ячейка Вигнера — Зейтца — область кристаллической решётки с центром в некоторой точке решётки Браве, которая лежит ближе к этой точке решётки, чем к какой-либо другой точке решётки. Названа в честь американских физиков Юджина Вигнера и Фредерика Зейтца.
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако, ими можно замостить гиперболическую плоскость и сферу.
Мозаика Пенроуза , плитки Пенроуза — общее название трёх типов непериодического разбиения плоскости. Названы в честь английского математика Роджера Пенроуза, который исследовал эти разбиения в 70-х годах XX века.
Правильный восьмиугольник (октагон) — геометрическая фигура из группы правильных многоугольников. У него восемь сторон и восемь углов, все углы и стороны равны между собой.
Тетра́эдр (др.-греч. τετρά-εδρον — четырёхгранник, от др.-греч. τέσσᾰρες, τέσσερες, τέττᾰρες, τέττορες, τέτορες — «четыре» + др.-греч. ἕδρα — «седалище, основание») — простейший многогранник, гранями которого являются четыре треугольника, треугольная пирамида. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у которого все грани — равносторонние треугольники, называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников.