Понятия со словом «полиэдр»
Полиэдром называется объединение многогранников. Не обязательно одинаковой размерности.
Связанные понятия
Группы
симметрии, операции которых оставляют хотя бы одну точку пространства на месте, называются точечными группами симметрии. Типичные примеры точечных групп — группа вращений, группа линейных преобразований, зеркальная симметрия. Понятие точечной группы также обобщается для Евклидового пространства любой размерности. То есть это группа преобразований, которые не меняют расстояния между точками n-мерного пространства, и при этом оставляют неподвижной хотя бы одну точку. Последнее условие отличает...
Три вектора (или большее число) называются компланарными, если они, будучи приведёнными к общему началу, лежат в одной плоскости.
Подробнее: Компланарность
Решётка Браве́ — понятие для характеристики кристаллической решётки относительно сдвигов. Названа в честь французского физика Огюста Браве. Решёткой или системой трансляций Браве называется набор элементарных трансляций или трансляционная группа, которыми может быть получена вся бесконечная кристаллическая решётка. Все кристаллические структуры описываются 14 решётками Браве, число которых ограничивается симметрией.
Хиральность (киральность) (англ. chirality, от др.-греч. χειρ — «рука») — отсутствие симметрии относительно правой и левой стороны. Например, если отражение объекта в идеальном плоском зеркале отличается от самого объекта, то объекту присуща хиральность.
Трансляционная симметрия — тип симметрии, при котором свойства рассматриваемой системы не изменяются при сдвиге на определённый вектор, который называется вектором трансляции. Например, однородная среда совмещается сама с собой при сдвиге на любой вектор, поэтому для неё свойственна трансляционная симметрия.
Кристаллографические группы, или фёдоровские группы — набор групп симметрий, которые описывают все возможные симметрии бесконечного количества периодически расположенных точек в трёхмерном пространстве.
Подробнее: Список кристаллографических групп
Термин геометрическая координация используется в целом ряде смежных областей химии — химии/физики твердого тела и не только.
Подробнее: Координационная геометрия
Молекулярный граф — связный неориентированный граф, находящийся во взаимно-однозначном соответствии со структурной формулой химического соединения таким образом, что вершинам графа соответствуют атомы молекулы, а рёбрам графа — химические связи между этими атомами. Понятие «молекулярный граф» является базовым для компьютерной химии и хемоинформатики. Как и структурная формула, молекулярный граф является моделью молекулы, и как всякая модель, он отражает далеко не все свойства прототипа. В отличие...
Обратная решётка — точечная трёхмерная решётка в абстрактном обратном пространстве, где расстояния имеют размерность обратной длины. Понятие обратной решётки удобно для описания дифракции рентгеновских лучей, нейтронов и электронов на кристалле. Обратная решётка (обратное пространство, импульсное пространство) является Фурье-образом прямой кристаллической решётки (прямого пространства).
Ближний порядок — упорядоченность во взаимном расположении атомов или молекул в веществе, которая (в отличие от дальнего порядка) повторяется лишь на расстояниях, соизмеримых с расстояниями между атомами, то есть ближний порядок — это наличие закономерности в расположении соседних атомов или молекул.
Теория кристаллического поля — квантовохимическая модель, в которой электронная конфигурация соединений переходных металлов описывается как состояние иона либо атома, находящегося в электростатическом поле, создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами — как...
Бипирамида или дипирамида является трёхмерным многогранником, сформированным из двух пирамид, одна из которых является зеркальным отражением другой. Место соединения пирамид образует общую фигуру в виде многоугольника. Простая бипирамида формируется при сложении двух тетраэдров. При основании пирамиды в виде квадрата, причём боковые грани её равносторонние треугольники, формируется бипирамида, известная как октаэдр.
Элементарная ячейка — в геометрии, физике твёрдого тела и минералогии, в частности при обсуждении кристаллической решётки, минимальная ячейка, отвечающая единичной решёточной точке структуры с трансляционной симметрией в 2D, 3D или других размерностях. Существует принципиальное различие между примитивной и элементарной ячейкой при рассмотрении структуры кристалла. Примитивной ячейкой называется минимальный воображаемый объём кристалла, параллельные переносы (трансляции) которого в трёх измерениях...
Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d, f) орбиталей центрального атома многоатомной молекулы с возникновением одинаковых орбиталей, эквивалентных по своим характеристикам.
Фа́зовая диагра́мма (диаграмма состоя́ния) — графическое отображение равновесного состояния бесконечной физико-химической системы при условиях, отвечающих координатам рассматриваемой точки на диаграмме (носит название фигуративной точки).
σ-связь (сигма-связь) — ковалентная связь, образующаяся перекрыванием электронных облаков «по осевой линии», соединяющей ядра атомов. Характеризуется осевой симметрией.
Поверхность потенциальной энергии применяется для описания энергии системы, в особенности множества атомов, в терминах определённых параметров, обычно — координат атомов. Поверхность может определять энергию как функцию одной или нескольких координат. Если координата только одна, то поверхность называется кривой потенциальной энергии или профилем энергии.
Самосборка (англ. self-assembly) — процесс образования упорядоченной надмолекулярной структуры или среды, в котором в практически неизменном виде принимают участие только компоненты (элементы) исходной структуры, аддитивно составляющие или «собирающие», как части целого, результирующую сложную структуру.
Теория отталкивания электронных пар валентной оболочки (ОЭПВО) — один из подходов в химии, необходимый для объяснения и предсказания геометрии молекул. Согласно этой теории молекула всегда будет принимать форму, при которой отталкивание внешних электронных пар минимально (принцип минимума энергии).
Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями.
Соединение многогранников — это фигура, составленная из некоторых многогранников, имеющих общий центр. Соединения являются трёхмерными аналогами многоугольных соединений, таких как гексаграмма.
Индексы Миллера — кристаллографические индексы, характеризующие расположение атомных плоскостей в кристалле. Индексы Миллера связаны с отрезками, отсекаемыми выбранной плоскостью на трёх осях кристаллографической системы координат (не обязательно декартовой). Таким образом, возможны три варианта относительного расположения осей и плоскости...
Пи-связь (π-связь) — ковалентная связь, образующаяся перекрыванием атомных p-орбиталей. В отличие от сигма-связи, осуществляемой перекрыванием s-орбиталей вдоль линии соединения атомов, пи-связи возникают при перекрывании p-орбиталей по обе стороны от линии соединения атомов. Считается, что пи-связь реализуется в кратных связях — двойная связь состоит из одной сигма- и одной пи-связи, тройная — из одной сигма- и двух ортогональных пи-связей.Концепцию сигма- и пи-связей разработал Лайнус Полинг в...
Группа
симметрии (также группа симметрий) некоторого объекта (многогранника или множества точек из метрического пространства) ― группа всех движений, для которых данный объект является инвариантом, с композицией в качестве групповой операции. Как правило, рассматриваются множества точек n-мерного евклидова пространства и движения этого пространства, но понятие группы симметрии сохраняет свой смысл и в более общих случаях.
В геометрии подстановки плиток — это метод построения мозаик. Наиболее важно, что некоторые подстановки плиток образуют апериодические мозаики, то есть замощения, протоплитки которых не образуют какую-либо мозаику с параллельным переносом. Наиболее известные из них — мозаики Пенроуза. Подстановочные мозаики являются специальными случаями правил конечного подразделения, когда не требуется геометрическое равенство плиток.
Базисный набор — набор функций, который используется для построения молекулярных орбиталей, которые представляются как линейная комбинация функций этого набора с определёнными весами или коэффициентами. Обычно этими функциями являются атомные орбитали, центрированные на атомах, хотя иногда функции центрируют на связях, на половинах p-орбитали и т. п.
Квазикриста́лл (от лат. quasi «наподобие», «нечто вроде») — твёрдое тело, характеризующееся симметрией, запрещённой в классической кристаллографии, и наличием дальнего порядка. Обладает наряду с кристаллами дискретной картиной дифракции.
Изоморфизм (от др.-греч. ἴσος — «равный, одинаковый, подобный» и др.-греч. μορφή — «форма») — свойство элементов замещать друг друга в структуре кристалла. Изоморфизм возможен при одинаковых координационных числах атомов, а в ковалентных соединениях при тождественной конфигурации связей. Степень совершенства (при данных температуре и давлении) изоморфизма определяется близостью межатомных расстояний, состоянием химической связи и строением электронной оболочки атомов.
Соты обычно рассматриваются в обычном евклидовом («плоском») пространстве. Их можно также построить в неевклидовых пространствах, например, гиперболические соты. Любой конечный однородный многогранник можно спроецировать на его описанную сферу, что даст однородные соты в сферическом пространстве.
Блочный Гамильтониан — гамильтониан, описывающий критическое поведение магнетика вблизи точки фазового перехода второго рода.
Самоподобный объект — объект, в точности или приближённо совпадающий с частью себя самого (то есть целое имеет ту же форму, что и одна или более частей).
Подробнее: Самоподобие
В геометрии
построение Витхоффа, или конструкция Витхоффа — это метод построения однородных многогранников или мозаик на плоскости. Метод назван по имени математика В. А. Витхоффа. Часто метод построения Витхоффа называют калейдоскопным построением.
Те́ло геометри́ческое — «то, что имеет длину, ширину и глубину» в «Началах» Евклида, в учебниках элементарной геометрии ко всему «часть пространства, ограниченная своей образуемой формой».
Если дано топологическое пространство и группа действий на нём, образы отдельной точки под действием группы действий образуют орбиты действий. Фундаментальная область — это подмножество пространства, которое содержит в точности по одной точке из каждой орбиты. Она даёт геометрическую реализацию абстрактного множества представителей орбит.
Подробнее: Фундаментальная область
Координационное число (в химии и кристаллографии) — характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле.
В геометрии
сферический многогранник или сферическая мозаика — это тa мозаика на сфере, в которой поверхность разделена большими дугами на ограниченные области, называемые сферическими многоугольниками. Большая часть теории симметричных многогранников использует сферические многогранники.
Структурная формула — это разновидность химической формулы, графически описывающая расположение и порядок связи атомов в (ковалентном) соединении, выраженное на плоскости (2D-формулы) или в трёхмерном пространстве (3D-формулы). Связи в структурных формулах обозначаются валентными черточками (штрихами).
Графеновые наноленты — узкие полоски графена с шириной порядка 10—100 нм. По своим физическим свойствам отличаются от более широких образцов, которые имеют линейный закон дисперсии, как в бесконечном графене. Наноленты интересны тем, что обладают нелинейным законом дисперсии и полупроводниковыми свойствами из-за наличия запрещённой зоны, которая зависит от ширины ленты и расположения атомов на границах. Графеновые наноленты благодаря этому рассматриваются как важный шаг в создании транзистора на...
Символы Шёнфлиса — одно из обозначений точечных групп симметрии, наряду с символами Германа — Могена. Предложены немецким математиком Артуром Шёнфлисом в книге «Kristallsysteme und Kristallstruktur» в 1891.
Межзёренная граница — поверхность раздела двух зёрен (кристаллитов) в поликристаллическом материале. Межзёренная граница является дефектом кристаллической структуры и имеет тенденцию к понижению электрической проводимости и температуропроводности. Высокая энергия границ и относительно слабая связь в большинстве межзёренных границ часто делает их предпочтительным местом для возникновения коррозии и выделения второй фазы.
Квадратная антипризма — это второй многогранник в бесконечном ряду антипризм, образованных последовательностью треугольных граней, закрытых с обеих сторон многоугольниками. Квадратная антипризма известна также как антикуб.
Поверхность Ферми — поверхность постоянной энергии в k-пространстве, равной энергии Ферми в металлах или вырожденных полупроводниках. Знание формы поверхности Ферми играет важную роль во всей физике металлов и вырожденных полупроводников, так как благодаря вырожденности электронного газа транспортные свойства его, такие как проводимость, магнетосопротивление зависят только от электронов вблизи поверхности Ферми. Поверхность Ферми разделяет заполненные состояния от пустых при абсолютном нуле температур...
Тетра́эдр (др.-греч. τετρά-εδρον — четырёхгранник, от др.-греч. τέσσᾰρες, τέσσερες, τέττᾰρες, τέττορες, τέτορες — «четыре» + др.-греч. ἕδρα — «седалище, основание») — простейший многогранник, гранями которого являются четыре треугольника, треугольная пирамида. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр, у которого все грани — равносторонние треугольники, называется правильным. Правильный тетраэдр является одним из пяти правильных многогранников.
Гиперокта́эдр — геометрическая фигура в n-мерном евклидовом пространстве: правильный политоп, двойственный n-мерному гиперкубу. Другие названия: кокуб, ортоплекс, кросс-политоп.
Седиментацио́нный ана́лиз — совокупность методов определения размеров частиц в дисперсных системах и молекулярной массы макромолекул в растворах полимеров по скорости седиментации в условиях седиментационно-диффузного равновесия.
Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.