1. Книги
  2. Учебно-методические пособия
  3. NemtyrevAI

Data Science. Практика

NemtyrevAI (2024)
Обложка книги

В этой книге мы рассмотрим практические примеры обработки данных. Мы будем работать с различными типами данных, включая текст, изображения и звуки. Книга адресована как начинающим Data Science, так и опытным специалистам, которые хотят отдохнуть от постоянного подключения к сети и научиться работать с данными в офлайн-режиме.

Оглавление

  • Введение:
  • Глава 1: Работа с текстовыми данными

Купить книгу

Приведённый ознакомительный фрагмент книги «Data Science. Практика» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 1: Работа с текстовыми данными

— Парсинг текстовых файлов

— Очистка и преобразование текстовых данных

— Анализ частот словарного запаса

— Создание словоря дял анализа текстов

— Удаление стоп-слов и лемматизация

— Создание словосочетаний (n-грамм)

— Анализ текстов с помощью классификации и кластеризации

Текстовые данные являются одним из самых распространенных типов данных, с которыми мы сталкиваемся каждый день. В этой главе мы рассмотрим, как работать с текстовыми данными без подключения к Интернету.

Парсинг текстовых файлов

Парсинг текстовых файлов является первым шагом в обработке текстовых данных. Мы можем использовать различные библиотеки Python, такие как `pandas`, `numpy` и `re`, чтобы прочитать текстовые файлы и преобразовать их в удобный для анализа формат.

После парсинга текстовых файлов мы обычно сталкиваемся с различными проблемами, такими как неоднородность форматов, лишние пробелы и знаки препинания. Мы можем использовать различные методы очистки и преобразования текстовых данных, такие как удаление стоп-слов, перевод текста в нижний регистр и нормализация текста.

Пример кода на языке Python для парсинга текстовых файлов:

```python

# Импорт необходимых модулей

import re

# Определение функции для парсинга текстового файла

def parse_text_file(file_path):

# Открытие файла в режиме чтения

with open(file_path, 'r') as file:

# Чтение содержимого файла

content = file.read()

# Применение регулярного выражения для извлечения информации

pattern = r'Pattern' # Замените 'Pattern' на нужное вам регулярное выражение

matches = re.findall(pattern, content)

# Возврат найденных совпадений

return matches

# Пример использования функции парсинга текстового файла

file_path = 'example.txt' # Замените 'example.txt' на путь к вашему текстовому файлу

results = parse_text_file(file_path)

# Вывод результатов

for result in results:

print(result)

```

В данном примере функция `parse_text_file` принимает путь к текстовому файлу в качестве аргумента и возвращает список найденных совпадений, которые соответствуют определенному регулярному выражению. Замените `'Pattern'` на нужное вам регулярное выражение, которое будет использоваться для парсинга текста.

Вот еще два примера кода на языке Python для парсинга текстовых файлов:

Пример 1: Парсинг CSV файла

```python

import csv

def parse_csv_file(file_path):

results = []

with open(file_path, 'r') as file:

csv_reader = csv.reader(file)

for row in csv_reader:

results.append(row)

return results

file_path = 'example.csv' # Замените 'example.csv' на путь к вашему CSV файлу

results = parse_csv_file(file_path)

for row in results:

print(row)

```

В данном примере функция `parse_csv_file` принимает путь к CSV файлу в качестве аргумента и использует модуль `csv` для чтения содержимого файла. Функция возвращает список, содержащий строки CSV файла, где каждая строка представлена в виде списка значений. Замените `'example.csv'` на путь к вашему CSV файлу и запустите код для парсинга данных из файла.

Пример 2: Парсинг JSON файла

```python

import json

def parse_json_file(file_path):

with open(file_path, 'r') as file:

data = json.load(file)

return data

file_path = 'example.json' # Замените 'example.json' на путь к вашему JSON файлу

data = parse_json_file(file_path)

# Обработка данных JSON

# Например, вывод значения определенного ключа

value = data['key']

print(value)

```

В этом примере функция `parse_json_file` принимает путь к JSON файлу в качестве аргумента и использует модуль `json` для загрузки содержимого файла в структуру данных Python. Функция возвращает данные в формате словаря/списка, которые представляют JSON файл. Замените `'example.json'` на путь к вашему JSON файлу и используйте полученные данные по своему усмотрению. В данном примере показано, как можно обратиться к определенному ключу и вывести его значение.

Вы можете сохранить этот код в файл с расширением `.py`, заменив `'example.txt'` на путь к вашему текстовому файлу, и запустить его для парсинга данных из файла.

Очистка и преобразование текстовых данных

Примера кода на языке Python для очистки и преобразования текстовых данных:

Пример 1: Удаление знаков препинания и приведение к нижнему регистру

```python

import string

def clean_text(text):

# Удаление знаков препинания

text = text.translate(str.maketrans('', '', string.punctuation))

# Приведение к нижнему регистру

text = text.lower()

return text

# Пример использования функции очистки текста

text ="Это пример текста! Он содержит знаки препинания."

cleaned_text = clean_text(text)

print(cleaned_text)

```

В данном примере функция `clean_text` принимает текст в качестве аргумента и использует метод `translate` для удаления знаков препинания с помощью модуля `string`. Затем текст приводится к нижнему регистру с помощью метода `lower()`. Функция возвращает очищенный текст. Запустите код, чтобы увидеть результат.

Пример 2: Токенизация текста

```python

from nltk.tokenize import word_tokenize

def tokenize_text(text):

tokens = word_tokenize(text)

return tokens

# Пример использования функции токенизации текста

text ="Это пример предложения."

tokens = tokenize_text(text)

print(tokens)

```

В этом примере используется библиотека NLTK (Natural Language Toolkit) для токенизации текста. Функция `tokenize_text` принимает текст в качестве аргумента и использует метод `word_tokenize` для разделения текста на отдельные слова (токены). Функция возвращает список токенов. Запустите код, чтобы увидеть результат.

Пример 3: Удаление стоп-слов

```python

from nltk.corpus import stopwords

def remove_stopwords(tokens):

stop_words = set(stopwords.words('russian')) # Замените 'russian' на нужный язык

filtered_tokens = [token for token in tokens if token not in stop_words]

return filtered_tokens

# Пример использования функции удаления стоп-слов

tokens = ['это', 'пример', 'текста', 'со', 'стоп-словами']

filtered_tokens = remove_stopwords(tokens)

print(filtered_tokens)

```

В этом примере используется библиотека NLTK для удаления стоп-слов из списка токенов. Функция `remove_stopwords` принимает список токенов в качестве аргумента и использует набор стоп-слов для определенного языка (в примере использован русский язык). Затем функция фильтрует токены, исключая стоп-слова. Функция возвращает отфильтрованный список токенов. Запустите код, чтобы увидеть результат.

Обратите внимание, что для использования примера 3 вам потребуется предварительно установить библиотеку NLTK и скачать соответствующие ресурсы для выбранного языка.

Анализ частот словарного запаса

Анализ частот словарного запаса является одним из самых простых и эффективных методов анализа текстовых данных. Мы можем использовать различные библиотеки Python, такие как `nltk` и `collections`, чтобы подсчитать частоту словарного запаса в текстовых данных и вывести самое часто используемые слова.

Пример кода на языке Python, который поможет вам проанализировать частоту словарного запаса:

```python

from nltk.tokenize import word_tokenize

from nltk.probability import FreqDist

def analyze_word_frequency(text):

# Токенизация текста

tokens = word_tokenize(text)

# Вычисление частоты встречаемости слов

freq_dist = FreqDist(tokens)

return freq_dist

# Пример использования функции анализа частоты словарного запаса

text ="Это пример текста. Он содержит несколько слов, и некоторые слова повторяются."

word_freq = analyze_word_frequency(text)

# Вывод наиболее часто встречающихся слов

most_common_words = word_freq.most_common(5)

for word, frequency in most_common_words:

print(f"{word}: {frequency}")

```

В этом примере используется библиотека NLTK. Функция `analyze_word_frequency` принимает текст в качестве аргумента. Сначала текст токенизируется с помощью `word_tokenize`, затем вычисляется частота встречаемости слов с использованием `FreqDist`. Функция возвращает объект `FreqDist`, который представляет собой словарь, где ключами являются слова, а значениями — их частоты встречаемости.

В примере после анализа частоты словарного запаса выводятся пять наиболее часто встречающихся слов и их частоты. Измените число `5` на нужное количество слов, которые вы хотите вывести.

Обратите внимание, что для использования кода вам нужно предварительно установить библиотеку NLTK и скачать необходимые ресурсы, такие как токенизаторы и словари, с помощью функции `nltk.download()`.

Еще один пример кода на языке Python для анализа частоты словарного запаса:

```python

from nltk.tokenize import word_tokenize

from nltk.probability import FreqDist

import matplotlib.pyplot as plt

def analyze_word_frequency(text):

# Токенизация текста

tokens = word_tokenize(text)

# Вычисление частоты встречаемости слов

freq_dist = FreqDist(tokens)

return freq_dist

# Пример использования функции анализа частоты словарного запаса

text ="Это пример текста. Он содержит несколько слов, и некоторые слова повторяются."

word_freq = analyze_word_frequency(text)

# Вывод наиболее часто встречающихся слов

most_common_words = word_freq.most_common(5)

for word, frequency in most_common_words:

print(f"{word}: {frequency}")

# Визуализация частоты слов

word_freq.plot(30, cumulative=False)

plt.show()

```

В этом примере также используется библиотека NLTK. Функция `analyze_word_frequency` принимает текст в качестве аргумента. Текст токенизируется с помощью `word_tokenize`, а затем вычисляется частота встречаемости слов с использованием `FreqDist`.

Конец ознакомительного фрагмента.

Оглавление

  • Введение:
  • Глава 1: Работа с текстовыми данными

Купить книгу

Приведённый ознакомительный фрагмент книги «Data Science. Практика» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я