1. Книги
  2. Саморазвитие / личностный рост
  3. Андрей Васильевич Зубков

Нейросеть на пальцах: как работает ИИ и как его использовать?

Андрей Васильевич Зубков (2024)
Обложка книги

«Нейросеть на пальцах: как работает ИИ и как его использовать?» — это практичное и увлекательное руководство по искусственному интеллекту и нейросетям, написанное доступным языком и рассчитанное на самого широкого читателя. Книга отвечает на вопросы о том, что такое ИИ, как он учится, принимает решения и находит применение в повседневной жизни. Автор шаг за шагом объясняет базовые принципы работы нейросетей, раскрывает их возможности и показывает, как использовать их для упрощения задач, повышения продуктивности и даже для творчества. Здесь нет сложных терминов и математических формул — только практические советы и вдохновляющие идеи о том, как нейросети могут стать вашим помощником в работе, учебе и саморазвитии. Если вы хотите не просто понимать технологии будущего, но и применить их в своей жизни, эта книга — ваш путеводитель в мир ИИ.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Нейросеть на пальцах: как работает ИИ и как его использовать?» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2: Как нейросеть учится?

Зачем нейросетям нужно обучение?

Чтобы нейросеть могла правильно выполнять задачи — например, распознавать лица или рекомендовать фильмы, — её нужно «научить». Представьте себе процесс, похожий на обучение ребёнка: в начале он ничего не знает, но, сталкиваясь с примерами и получая обратную связь, постепенно начинает разбираться, что хорошо, а что плохо. Обучение нейросети тоже строится на большом количестве примеров, но происходит оно по математическим правилам, а не на основе опыта и эмоций.

Эта глава объяснит, как именно нейросети учатся и что заставляет их становиться умнее и точнее после каждого пройденного примера.

Два основных типа обучения нейросетей

Процесс обучения нейросетей обычно делится на два типа, в зависимости от того, есть ли у нас готовые правильные ответы для примеров.

С учителем. Это как учёба с преподавателем: каждому примеру уже приписан правильный ответ. Например, у нас есть набор фотографий кошек и собак, и каждая картинка помечена: это кошка, это собака. Нейросеть видит пример, сравнивает результат со своим ответом и, если ошибается, исправляется. Постепенно, на сотнях или тысячах изображений, она запоминает, как выглядят кошки и собаки.

Без учителя. Здесь нет готовых ответов, и нейросеть сама пытается найти общие черты или закономерности в данных. Например, она может сгруппировать клиентов по похожим характеристикам, хотя не будет знать, что одни из них — «постоянные покупатели», а другие — «новые».

Есть и третий, более особенный способ — обучение с подкреплением, когда нейросеть учится через взаимодействие с миром, например, обучаясь играть в игры или управлять роботом. Она получает награду или штраф за свои действия и со временем выбирает наиболее выгодные шаги.

Шаги обучения нейросети

Когда мы начинаем обучение нейросети, все её внутренние параметры изначально выставлены случайно. Поэтому сначала сеть работает хаотично и выдаёт неточные результаты. Чтобы сеть начала разбираться в задачах, процесс обучения повторяется множество раз:

Обработка данных. В начале обучения нейросеть пропускает входные данные — например, изображение — через свои слои, обрабатывая информацию на каждом этапе и выдавая результат. Этот процесс называется «прямой проход».

Сравнение результата с правильным ответом. Сеть сравнивает свой ответ с правильным, чтобы понять, насколько он отличается. Эта разница называется ошибкой.

Коррекция ошибок. Нейросеть исправляет свои внутренние параметры так, чтобы в следующий раз сделать меньшую ошибку. Она «возвращается» от результата к началу, изменяя настройки в каждом слое. Этот процесс называют «обратное распространение ошибки».

Обновление параметров. Нейросеть обновляет параметры, то есть корректирует их, чтобы ошибки становились меньше. С каждым новым проходом она немного улучшает свои навыки.

Нейросеть многократно повторяет эти шаги, пока её прогнозы не станут достаточно точными.

Как нейросеть понимает, в какую сторону двигаться?

Когда нейросеть исправляет свои ошибки, она использует метод, который называется градиентный спуск. Этот метод позволяет сети находить правильные значения параметров, чтобы ошибки были как можно меньше. Представьте, что градиентный спуск — это как спуск с холма в поисках самой низкой точки (или минимальной ошибки). На каждом шаге нейросеть «спускается» по холму, приближаясь к правильному ответу.

Очень важно выбрать, с какой скоростью делать эти шаги, что называется скоростью обучения. Если скорость слишком высокая, нейросеть может перескочить правильный ответ. Если скорость слишком низкая, обучение займёт много времени. Правильно выбранная скорость помогает сети эффективно учиться.

Почему обучение требует времени и что может пойти не так?

Обучение нейросети — процесс небыстрый, и иногда результаты могут быть не такими, как хотелось бы. Вот некоторые из самых распространённых трудностей:

Переобучение. Сеть запоминает обучающие данные слишком хорошо и перестаёт адекватно работать с новыми данными. Это похоже на заучивание вместо понимания.

Недообучение. Нейросеть недостаточно хорошо настроена для понимания данных и не улавливает их закономерности.

Затухание ошибки. В глубоких сетях ошибка может скрываться алгоритмами, что замедляет обучение.

Чтобы избежать этих проблем, учёные добавляют больше данных, используют специальные архитектуры сети и тестируют разные параметры. Это помогает сети лучше понимать и обрабатывать данные, что повышает её точность.

Обучение нейросети — это её основа

Именно этот процесс позволяет ей решать сложные задачи, такие как распознавание лиц или диагностика болезней. Зная, как нейросети обучаются, можно лучше понять, почему они так быстро стали популярны и как они меняют подход к работе с данными в разных областях: от медицины до маркетинга.

Сегодня понимание принципов обучения нейросетей помогает оставаться в курсе новых технологий и получать больше преимуществ от их использования. Те, кто начинает изучать нейросети сейчас, в будущем будут лучше адаптироваться к изменениям в мире и находить интересные возможности для себя.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Нейросеть на пальцах: как работает ИИ и как его использовать?» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я