Катастрофы в природе: удар из космоса. Факты, причины, гипотезы, последствия

Батыр Каррыев

Книга продолжает научно-популярную серию «Катастрофы в природе», включающую рассказы о землетрясениях (2016, 2017), вулканах (2016), гравитационных перемещениях вещества на Земле (2016) и водной стихии (2017). В ней рассказывается о малых небесных телах и связанными с ними угрозах для человечества и всего живого на Земле. Книга будет полезна всем тем, кто интересуется исследованиями в области наук о Земле и космического пространства.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Катастрофы в природе: удар из космоса. Факты, причины, гипотезы, последствия предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Неография Солнечной системы

«Сделанное Хабблом открытие перевело вопрос о том, как возникла Вселенная, в область компетенции науки». Стивен Хокинг «Краткая история времени», 1987 год

Мимолётный взгляд на звёздное небо рождает ощущение неподвижности и безжизненности космического пространства. Однако это не так. Движение Земли не требует доказательств — из-за него происходит смена дня и ночи, а полный оборот вокруг своей оси планета совершает за 23 часа 56 минут 4 секунды. На экваторе линейная скорость вращения составляет 1674,365 км/час, а обращение Земли вокруг Солнца происходит за один год или 365,26 солнечных суток.

О том, каких скоростей может достигать движение космических тел относительно друг друга достаточно упомянуть о падении в середине 2016 года кометы из семейства Крейца на Солнце. Скорость её сближения со светилом превысила два миллиона километров в час. Иными словами эта испарившаяся в солнечной короне масса льда и космической пыли могла бы пересечь диск Земли за 22 секунды, а Солнца за 37 минут.

Сопоставление возраста важных космических событий, от Вселенной до удара астероида о земную поверхность 65 миллионов лет назад.

В свою очередь Солнечная система со скоростью 828000 км/час смещается относительно центра галактики Млечный Путь, совершая полный оборот вокруг неё за 230 миллионов лет. Помимо этого сама наша галактика перемещается относительно других галактик. С начала времён трансформация и движение это неотъемлемое свойство известной части Вселенной.

Звёздное небо помогает заглянуть в прошлое, оно же предоставляет возможность узнать судьбу Солнечной системы и будущее Земли. Эта история записана в рельефе космических тел, примерно также как старые граммофонные пластики сохранили музыку и голоса ныне ушедших в вечность людей.

Изучение других планет способствует пониманию эволюции Земли, и того как сформировалось её внутреннее строение, поскольку совершить межпланетное путешествие на другие планеты Солнечной системы оказалось легче, чем проникнуть в мантию или земное ядро. Практически невозможно произвести непосредственные изучение земного вещества на глубинах в сотни и тысячи километров. Изучение остатков протопланет — астероидов и метеороидов предоставляет эту возможность, и узнать, как и из какого вещества образовалась Земля более 4,5 миллиардов лет назад.

Солнечная система образована звездой и вращающимся вокруг неё восьмью планетами с более 63-мя спутниками (2017), несколькими десятками комет, огромным количеством астероидов и множеством метеороидов. Все космические тела движутся по своим траекториям вокруг Солнца. Четыре ближайшие к Солнцу планеты определены как планеты земной группы: Меркурий, Венера, Земля и Марс в основном состоящих из силикатов и металлов. Более удалённые от звезды образования называются газовыми планетами-гигантами. Это Юпитер, Сатурн, Уран и Нептун. В Солнечной системе обнаружены четыре карликовые планеты: Плутон, Эрида, Макемаке, Хаумеа, а в целом, вероятно, их значительно больше.

На геологической шкале времени жизнь на Земле возникла почти одновременно с её образованием — на разогретой непрерывно бомбардируемой астероидами поверхности. Это ставит вопрос, как и почему это произошло? Ответ на него даст разгадку тайны возникновения жизни во Вселенной и возможности существования разумных существ на других планетах.

Сопоставление величины планет Солнечной системы с планетой-гигантом Юпитером.

Начало изучения космических объектов можно отнести к размышлениям древнегреческого учёного Демокрита Абдерского и его гениальной концепции множественности миров. Только спустя сотни лет одним из первых внимание на строение поверхности иных, чем Земля космических тел, обратил итальянский учёный Галилео Галилей.

«Существует безграничное множество миров, различающихся по размеру и в некоторых из них нет ни Солнца, ни Луны, в то время как в других их больше, чем у нас и они больше по размеру. Промежутки между мирами не созданы равными, здесь они больше, там меньше, некоторые из них растут, другие процветают, третьи распадаются, здесь они рождаются, там умирают, уничтожаются при столкновении друг с другом. И некоторые из миров голые, без животных и растений, покрытые водой». Высказывание Демокрита Абдерского (по Святому Ипполиту Римскому, около 170—235 гг.).

В 1610 году Галилей опубликовал работу «Звёздный вестник, открывающий великие и в высшей степени удивительные зрелища». В ней он отметил: «Поверхность Луны не вполне гладкая, лишённая каких-либо неровностей и идеально шарообразная, как полагает одна философская школа. Напротив эта поверхность очень неправильная, испещрённая ямами и поднятиями, в точности, как и поверхность Земли, которая повсюду испещрена высокими горами и глубокими долинами».

В 1609 году в книге «Новая астрономия» немецкий учёный Иоганн Кеплер сформулировал основные положения о движении вокруг Солнца планет, а в книге «Гармония мира» (1618) привёл расчёт их вращения вокруг светила — три Закона Кеплера. Тем самым был предложен научный подход к определению количественных параметров перемещения космических объектов вокруг Солнца.

Планета это вращающееся по орбите вокруг звезды или её остатков небесное тело, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, сумевшее очистить окрестности своей орбиты от более мелких скоплений протовещества (планетезималей).

Открытые Кеплером закономерности с высокой точностью объяснили обнаруженную ранее неравномерность движений планет. Он ввёл строгие понятия об их орбитах, термины «спутник» (Narratio de Iovis Satellitibus, 1611), «инерция» и др. Уравнение Кеплера используется и сегодня в астрономии для определения положения небесных тел.

С появлением точных наук удалось разгадать тайну формирования Солнечной системы. Их краеугольным камнем стало учение Исаака Ньютона о всемирном тяготении, согласно которому сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств.

Сформулированные Ньютоном законы классической механики позволили объяснить происходящие в недрах Земли, её атмосфере и гидросфере динамические процессы. Таких как приливы и отливы в океанах, прецессию земной оси, особенности движения Луны, сжатие Юпитера, орбиты его спутников и многие другие.

Новый этап в понимании Вселенной и места в нём Солнечной системы связан с Альбертом Эйнштейном. Он внёс важный вклад в теоретическую физику, создание новых физических концепций, построению теории гравитации взамен ньютоновской. Работы Эйнштейна заложили не только основы квантовой теории, но и образуют фундамент физики XXI века.

Спутник или луна это небесное тело, обращающееся по определённой траектории — орбите вокруг другого объекта в космическом пространстве под действием гравитации. У спутников могут быть свои луны. С выводом космических аппаратов в космос появилось понятие искусственного спутника (ИСЗ). В 1957 году 4 октября СССР вывел на орбиту первый искусственный спутник Земли. В 2009 году 10 февраля впервые в космосе столкнулись два ИСЗ — российский «Космос-2251» и американский «Iridium 33».

В 1929 году Эдвин Хаббл обнаружил разбег галактик, что подтвердило справедливость гипотезы Большого Взрыва бельгийца Жоржа Леметра (Georges Henri Joseph Édouard Lemaître, 1927) и русского учёного Александра Фридмана (1922). Фридман показал, что Вселенная не может быть статической и за несколько лет до открытия Хаббла, в точности предсказал его результат. Это кардинально изменило научное понимание Вселенной и доказало существование других галактик помимо Млечного Пути.

Эдвин Хаббл автор эмпирического Закона Красного смещения для галактик (Закон Хаббла), который, если интерпретировать красное смещение как меру скорости удаления, согласуется с решениями уравнений общей теории относительности Эйнштейна для гомогенных изотропных расширяющихся пространств. Его исследование стало первым подтверждением теории Большого Взрыва. Наблюдаемые скорости далёких галактик, взятые вместе с космологическим принципом, показали — Вселенная расширяется, что согласуется с моделью Фридмана-Леметра построенной на основе Общей теории относительности Эйнштейна.

Открытие факта расширяющейся Вселенной изменило существовавшие представления о природе формировавшееся на протяжении тысяч лет. Как и в случае с геоцентрической моделью Солнечной системы Птолемея, Земля оказалась не её центром, а всего лишь одним из фрагментов космоса. Это сделало возможным объяснить многие загадки столетиями не дававшим покоя людям, но поставило ещё больше вопросов об устройстве мирозданья.

Одними из них является существование чёрных дыр, гипотетических тёмной материи и энергии. В 2013 году по данным наблюдений космической обсерватории «Planck» Европейского космического агентства (ESA), определено, что общая масса-энергия наблюдаемой Вселенной состоит на 4,9% из обычной — барионной материи, на 26,8% из тёмной материи и на 68,3% из тёмной энергии. Таким образом, Вселенная на 95,1% состоит из тёмной материи и тёмной энергии.

В 2017 году международная группа исследователей опубликовала фрагмент первой карты распределения тёмной материи (Dark Energy Survey, DES) в доступной современным средствам наблюдений части Вселенной. Она показывает волокна из тёмной материи усеянные галактиками, а также провалы между ними. Для построения карты использовались данные полученные с помощью цифровой фотокамеры разрешением 570 мегапикселей установленной на телескопе «Víctor M. Blanco» обсерватории Черро Толедо в чилийских Андах.

«Наблюдения Хаббла говорили о том, что было время — так называемый Большой взрыв, когда Вселенная была бесконечно малой и бесконечно плотной. При таких условиях все законы науки теряют смысл и не позволяют предсказывать будущее. Если в ещё более ранние времена и происходили какие-либо события, они всё равно никак не смогли бы повлиять на то, что происходит сейчас. Из-за отсутствия же наблюдаемых следствий ими можно просто пренебречь. Большой взрыв можно считать началом отсчета времени в том смысле, что более ранние времена были бы просто не определены. Подчеркнем, что такое начало отсчета времени очень сильно отличается от всего того, что предлагалось до Хаббла». Стивен Хокинг «Краткая история времени», 1987 год.

Вплоть до середины прошлого века не было понимания процессов формирующих звёздные системы, а знания о строении планет и происходящих на их поверхности процессах просто отсутствовали. Особый вклад в теорию образования Солнечной системы внёс советский учёный Виктор Сафронов.

Согласно его модели (1969) период формирования Земли составил около ста миллионов лет. При этом её центральная область образовалась относительно холодной, а нагретые до температуры плавления слои были сосредоточены в её верхней части. Это поставило вопрос об инструментальном изучении объектов в Солнечной системе, поскольку другой возможности взять образцы вещества ядра Земли просто невозможно.

Одним из учёных внесших значительный вклад в программы по изучению космического пространства стал американец Карл Саган. Он занимался исследованиями Венеры, Марса и спутника Сатурна — Титана. Саган первым обратил внимание на схожесть процессов превративших Венеру в раскалённую планету и потеплением на Земле из-за парникового эффекта. Он был не только учёным, но и популяризатором астрономических исследований и космических полётов.

До полётов автоматических космических станций все знания об объектах Солнечной системы основывалось на наблюдениях с земной поверхности. И сегодня они вносят основной вклад в изучение Вселенной, но самые лучшие астрофические инструменты не способны различать даже крупные детали рельефа и тем более наблюдать протекающие в атмосфере и на поверхности других планет процессы.

«Космос — это всё, что есть, что когда-либо было и когда-нибудь будет. Одно созерцание Космоса потрясает: дрожь бежит по спине, перехватывает горло, и появляется чувство, слабое, как смутное воспоминание, будто падаешь с высоты. Мы сознаём, что прикасаемся к величайшей из тайн». Карл Саган «Космос», 1980 год.

К примеру, если бы некто находящийся на расстоянии в сто световых лет от Солнечной системы задался бы целью её исследования современными земными инструментами, то обнаружил бы только Венеру и Землю. Он не смог бы понять, как они устроены или, что происходит на их поверхности.

До полётов зондов на Луну, Марс и Венеру ничего не было известно об их веществе, строении поверхности и происходящих на ней под ней процессов. Более того все современные знания о веществе Луны основываются на изучении около 350 килограммов грунта добытых миссиями NASA по программе «Apollo», нескольких сотен граммов доставленных советскими аппаратами и изучении попавших на Землю лунных метеоритов. Сопоставимо с масштабом исследуемых объектов всего этого крайне мало для составления целостной картины о них.

Ясно одно, происходящие на поверхности и в атмосфере других планет процессы во многом не схожи с теми, что наблюдаются в земных условиях. Попытки проведения аналогий между ними чаще всего малоинформативны, а новое знание можно приобрести только организацией новых космических миссий. Важно и то, что многое из уже обнаруженного десятилетиями не находят научного объяснения, а оно необходимо для снижения рисков внеземных экспедиций.

Тем не менее, уже первое проникновение в ближний космос принесло ценный научный материал и привело к возникновению новой науки — планетологии. Хотя этот термин введён в оборот ещё в 1896 году французским геологом Станиславом Менье опубликовавшего книгу «Сравнительная геология или геология небесных тел», по сути это то, чем сегодня занимаются учёные в космосе.

Планетология это конвергенция инструментальных средств и методологии астрономии, геологии, геофизики, информатики, кибернетики, математики, химии и многих других. Для изучения протекающих на поверхности других планет процессов был востребован опыт и знания вполне земных специалистов — геоморфологов, гляциологов, картографов, метеорологов, биологов и других.

Оказалось, что в развитии тектонических структур планет земной группы есть схожие элементы. Точно установлено, что все они имеют ядро, мантию и кору. В коре этих планет имеются системы разломов, и обнаружены трещины растяжения, приведшие к образованию на Венере, Земле и Марсе рифтовых структур. На Меркурии, как и на Земле, установлены структуры сжатия. И только на Земле выделяются мощные сдвиги, складчатые пояса и пологие надвиги — шарьяжи.

Здесь важно отметить, что по отношению почти ко всем астрономическим телам Солнечной системы пока идёт процесс накопления основных сведений и очень редко удаётся зафиксировать динамические явления на их поверхности. Это происходит из-за того что нет достаточных технических и финансовых возможностей вести непрерывную съёмку с их орбиты. Тем более одного и того же участка поверхности.

В отсутствие возможности проводить непосредственные наблюдения и измерения на поверхности космических тел основным способом изучения их строения становится картографирование с использованием цифровой фотографии. В свою очередь, данные косвенных методов, таких как гравиметрия, магнитометрия, спектральный анализ и других позволяют сформировать общее представление о строении и особенностях вещественного состава внеземных объектов. При этом по детальности и информативности всё, что известно о других планетах многократно уступает знаниям о Земле и происходящих на ней физико-химических процессах.

Каждое проникновение человека в космос приводит к открытиям. Не стали исключением миссии зондов к окраинам Солнечной системы. Начиная с первых американских межпланетных станций «Pioneer 10» (1972) и «Pioneer 11» (1973) и продолжающихся уже несколько десятков лет миссий NASA «Voyager 1» и «Voyager 2» (1977). На них установлены золотые пластины с посланиями инопланетным цивилизациям, с которыми гипотетически они могут встретиться. Возможно, это произойдёт когда на Земле исчезнет современная цивилизация, как и сегодня уже нет большинства тех, кто создал эти зонды.

20 августа 1977 года начата космическая миссия NASA «Voyager». Её основной целью было исследование Сатурна и Юпитера. Зонды готовили к встрече с суровой средой планет-гигантов и в них заложили повышенную надёжность позволившую аппаратам «Voyager» проработать в восемь раз дольше ожидаемых пяти лет. На 2017 год зонд «Voyager 1» более пяти лет находился в межзвёздном пространстве — за пределами Солнечной системы.

Космические зонды впервые передали на Землю качественные снимки Сатурна и Юпитера, их спутников и вид из космоса на Землю и Солнце. Зонд «Voyager 2» первым посетил окрестности всех четырёх газовых планет-гигантов — Юпитера, Сатурна, Урана и Нептуна. Зонд «Voyager 1» первым достиг границ гелиосферы — одного из условных пределов Солнечной системы.

«Никто из нас не думал, когда мы запускали аппараты сорок лет назад, что они будут работать так долго и продолжать свои пионерские исследования. Самые интересные вещи, которые они найдут в следующие пять лет, скорее всего, то о чём мы пока даже не имеем представления». Эд Стоун, руководитель проекта «Voyager», 2017 год.

В 2016 году запущенный по программе NASA «New Horizons» (2003) зонд «Jupiter Polar Orbiter» (Juno, 2011) стал вторым космическим аппаратом, вышедшим на орбиту Юпитера после зонда NASA «Galileo» (1995—2003). По этой программе зонд «New Horizons» (2006) исследовал Плутон (2015), а до этого он проводил наблюдения Юпитера и его спутников (2007).

Если благодаря этой миссии будет установлено наличие твёрдого ядра у Юпитера, то это принесёт новое замечательное знание о планетах-гигантах. О сложности и масштабности миссии говорит то, что для выхода на орбиту Юпитера зонду «Juno» понадобилось пять лет, за которые он проделал путь в три миллиарда километров.

Разработанные для исследования Земли научные методы и оборудование используются для изучения других космических тел. Астрономы и планетологи стали неогеографами, а занимающиеся географией специалисты используют компьютерные и космические технологии для наблюдения за земной поверхностью. Благодаря прогрессу космических технологий стало реальным возникновение новых научных направлений, но уже применительно к объектам исследований — астероидографии, лунографии, марсографии, плутонографии и т. д.

С развитием представлений о Земле стало понятно, что происходящие в Солнечной системе явления играют важную роль в эволюции её биосферы. Это связано в первую очередь с астероидной — кометной теорией образования воды на планете, занесением на неё жизни и, что самое актуальное на сегодняшний день — возможного столкновения Земли с крупным астероидом.

Соотношение размеров самых крупных объектов обнаруженных в Главном поясе астероидов, от крупнейшего (4) Vesta диаметром 525 км до относительно небольшого астероида (2867) Steins в 6,8 км.

Собранные данные о прошлом, обнаруженные на земной поверхности ударные кратеры, астрономические наблюдения и математические расчеты указывают на потенциальную угрозу со стороны малых космических тел (NEO) существованию цивилизации и жизни на Земле. В начале 1980-х годов их изучение стало не просто научной задачей, а жизненно необходимой для решения проблемой.

Под околоземным объектом (Near-Earth Object, NEO) понимается любое небольшое тело в Солнечной системе, орбита которого проходит рядом с земной, пересекает её или способно приблизится к ней в будущем. Объект в Солнечной системе является NEOs, если его ближайший подход к Солнцу (перигелий) менее 1,3 астрономической единицы (ua). На 2017 год обнаружено более четырнадцати тысяч околоземных астероидов (Near-Earth Asteroid, NEA), более ста околоземных комет (Near-Earth Comets, NEC) и множество метеороидов. Их падение на земную поверхность способно вызвать крупный ущерб, вплоть до уничтожения жизни на Земле.

В 2016 году NASA образовало «Planetary Defense Coordination Office» (Координационное бюро по планетарной защите) для отслеживания NEOs диаметром более 30—50 метров и принятия мер для предотвращения катастрофических последствий от столкновения Земли с ними. Европейский союз, США и некоторые другие страны приступили к изучению и обнаружению околоземных объектов.

В 1998 году NASA получило мандат Конгресса США на обнаружение всех NEOs размерами одного километра и более. В 2006 году было констатировано, что около 20% подобных объектов ещё не обнаружено. В 2011 году благодаря проекту NEOWISE заявлено, что найдено 93% NEAs размерами более одного километра и предстоит определить ещё около семидесяти.

На июнь 2017 года обнаружено 875 NEAs величиной в один километр и более, из которых 158 признаются потенциально опасными. Отметим, катастрофические последствия могут быть вызваны и объектами меньшего размера в зависимости от места падения (на сушу или океан, вблизи крупного населенного пункта, на атомную электростанцию и т.д.), а глобальную катастрофу на Земле способен вызвать всего один пропущенный крупный астероид.

Ещё недавно казалось, что исследования сейсмичности Луны представляют только научный интерес, однако планы организовать на этой планете обитаемые станции перевели их в разряд практически важных. Им могут угрожать удары метеоритов и лунотрясения. Только с 1972 по 1977 год было зарегистрировано несколько лунотрясений с магнитудами около 5,5 по шкале Рихтера.

Орбиты известных потенциально опасных астероидов (голубой цвет) размером более 140 метров на расстоянии до 7,6 млн. км от Земли (2013) и подразделение их на группы в зависимости расположения орбит относительно Солнца.

В Солнечной системе существуют две основные области с наибольшим количеством малых тела. Это пояс астероидов между Марсом и Юпитером и за орбитой Нептуна, где располагаются транснептуновые объекты. Есть и другие скопления малых тел — семейства, планетные квазиспутники и троянцы, околоземные астероиды, кентавры, дамоклоиды, а также перемещающиеся в Солнечной системе кометы, метеороиды и космическая пыль. С момента обнаружения астероидов им присваивались, как и планетам, символы, но оказалось их так много, что в 1851 году немецкий астроном Иоганн Энке предложил использовать перед названием астероида порядковый номер в круглых скобках, например — (4) Vesta.

Самые лютые морозы и высокие температуры на Земле не идут в сравнение с холодом на поверхности Луны или Марса, раскалёнными пустынями Меркурия или вулканическими плато Венеры. Так, на неосвещённой стороне лунного экватора температура составляет днём +116 градусов Цельсия, а в ночное время падает до — 173 градусов.

На Меркурии температура меняется от +430 градусов до — 180 градусов Цельсия. На Марсе из-за разряженной атмосферы перепады температуры столь же значительны, достигая в зиму — 125 градусов, а в летнее время в среднем до +20 градусов по Цельсию. На марсианском экваторе дневная температура может достигать +27 градусов, то уже к утру падать до — 50 градусов Цельсия. Зимой здесь выпадает снег, но не из воды, а из замершего углекислого газа.

Сам по себе факт огромного диапазона изменений температуры достаточный повод чтобы считать возможным протекание различных динамических процессов на поверхности других космических тел. В этой связи необходим ответ на ряд вопросов. Какими процессами формируется их рельеф? Подобны ли они тем, что происходят на Земле? Какова мощность и скорость их протекания?

Важное отличие космических объектов от земных условий это наличие или отсутствие воды и её роль в формировании их поверхности. Водяной лёд обнаруживается почти повсеместно в Солнечной системе. Его скопления найдены на Луне, Меркурии и Марсе. На спутниках Юпитера обнаружены огромные запасы воды, а Европа покрыта многокилометровым слоем льда.

Вода есть на Ганимеде и Каллисто, а одну из лун Сатурна — Энцелад полностью покрывает ледяной панцирь, из которого с огромной скоростью вырываются струи водяного пара на высоту в сотни километров. Данные наблюдений говорят о наличии воды на Нептуне, Плутоне, Сатурне, Уране и Юпитере. Спутники Плутона и Урана скорей всего также обладают водными ресурсами.

На всех этих космических телах также как и на Земле действует гравитация. Она определяет форму, особенности внутреннего строения и характер протекающих на их поверхности процессов и явлений.

Отличие Земли от всех других планет заключается в возможности существования воды на поверхности сразу в трех фазах — газообразной, жидкой и твердой. Это один из признаков, которым руководствуются при оценке возможности жизни подобной земной на других космических телах — зоны обитаемости или «Златовласки». Находясь вблизи точки плавления, вода играет огромную роль в образовании земного рельефа. С другими космическими телами это не так.

Название обитаемой зоны «Зона Златовласки» (Goldilocks Zone) проистекает из названия английской сказки «Goldilocks and the Three Bears» (Три медведя) где Златовласка пыталась воспользоваться несколькими наборами из трёх однородных предметов. Каждый раз один из предметов оказывался неподходящим ей — то слишком большим, твёрдым или горячим, другой — слишком маленьким, мягким и холодным, но третий набор удовлетворил её полностью. Для того чтобы оказаться в обитаемой зоне, планета не должна находиться слишком далеко от звезды, ни слишком близко к ней, что бы вода могла находиться в жидком состоянии, а атмосфера быть благоприятной для кислородной формы жизни.

Планеты Солнечной системы подразделяются на две группы. Первая, это планеты земного типа: Меркурий, Венера, Земля и Марс. Для них характерны относительно небольшие размеры, малое количество спутников и твёрдое состояние. В основном они состоят из силикатов и железа. Остальные, Юпитер, Сатурн, Уран, Нептун это планеты-гиганты. Они не похожи на Землю и, в основном, образованы из газообразного водорода и гелия. О происходящих на них процессах почти ничего не известно.

Даже по отношению к Земле находящаяся на её орбите группировка из почти двух тысяч спутников не в состоянии вести непрерывный мониторинг её поверхности. Имеющиеся видеоролики о Солнце и других планетах смонтированы из множества разнесённых между собой на значительные временные интервалы фотоскринов. Также необходимо отметить, что большинство спутников не предназначены для научных исследований, и только немногие из них оснащены оборудованием для научных работ.

Казалось бы, что астрономические наблюдения с Земли способны решить проблему, однако это не так. Несмотря на высокую чувствительность и возможность непрерывной фиксации наблюдаемых явлений телескопы различного назначения не позволяют добиться достаточной пространственно-временной детальности для наблюдения протекающих на поверхности космических объектов процессов и явлений.

Несмотря на красочные и уникальные фотографии американского телескопа «Hubble» далёких галактик он не способен рассмотреть небольшие объекты на лунной поверхности типа советского Лунохода. Поэтому фотографий или видеозаписей динамических процессов, включая падение даже крупных астероидов, на космических телах практически нет или об этом судят по оставшимся после них следам на поверхности.

Важно и то, что в ходе космических миссий собирается огромный объём данных. Для его изучения и анализа нужны время, средства и компетентные специалисты обладающими обширными знаниями в области астрономии, геофизики, геологии, неогеографии, физики и др. Они должны владеть информационными технологиями, навыками математической обработки больших данных и многим другим. Поэтому сообщения о совершённых открытиях появляются спустя годы после завершения космических миссий.

Вопрос ещё в том насколько подобные исследования востребованы обществом. Полёты на МКС стали рутиной, мягкая посадка «Philae» на комету Чурюмова-Герасименко только на несколько часов перебила по популярности интернет-повседневность и т. п. Тем не менее, несмотря на всю сложность внеземных исследований, изучение небесных тел имеет принципиальное значение для понимания геологических процессов происходивших на Земле и её будущей судьбы.

В этой связи в 1968 году учёный и писатель Иван Ефремов отметил: «К физическим исследованиям Земли как планеты, небесного тела примыкает астрофизика. Изучение развития разновозрастных планет, звёзд, метеоритов даёт нам возможность в известной мере восстановить ту часть истории Земли, которая не записана в геологической летописи — слоях земной коры и относится к эпохе начального образования Земли».

Достижения в области информационных технологий и компьютерной визуализации превратили результаты научных исследований в увлекательное шоу, рождая ощущение всемогущества человека в космосе. Тем не менее, это всего лишь булавочные уколы в полотно Вселенной. В ней как и в Солнечной системе надёжных установленных фактов в миллиарды миллиардов меньше того что происходит в реальности.

Меркурий. Это одна из самых малоизученных и самая близкая к Солнцу планета. В 2011—2015 годах на орбите Меркурия находился аппарат NASA «Messenger» (2004). В 1974—1975 годах около планеты три раза пролетал другой американский зонд «Mariner 10» (1973). Целью этой миссии было исследование Венеры и Меркурия с пролётной траектории.

У Меркурия имеется крайне разрежённая газовая оболочка из гелия и собственное магнитное поле. Примерно до 0,7 массы планеты это большое железное ядро радиусом 1,8 тыс. км. Суммарная толщина мантии и коры составляет примерно 800 километров. На планете обнаружены следы по геологическим меркам недавней вулканической активности.

После приобретения сферической формы примерно 4,6 млрд. лет назад начался процесс остывания Меркурия и его объём уменьшился. Из-за этого внешняя каменная оболочка, остывшая быстрее, чем внутренние части планеты начала сжиматься. Это привело к растрескиванию коры планеты и наползанию одного края трещин на другой с формированием чешуйчатой поверхности, когда один слой пород надвинут на другой.

Следы этих движений отчетливо видны на поверхности Меркурия в виде уступов протяженностью в сотни километров и высотой в несколько километров извилистой формы. Лежащий сверху слой похож на застывшую каменную волну.

Поверхность Меркурия, как и спутника Земли — Луны, покрыта многочисленными ударными кратерами. Их число и сохранность свидетельствует о слабом влиянии эндогенных и тектонических процессов на современные ландшафты планеты. Поэтому, следы астероидной и метеоритных бомбардировок относительно хорошо сохранились.

Кратеры на Меркурии варьируют от маленьких впадин, имеющих форму чаши, до многокольцевых ударных кратеров поперечником в сотни километров. Крупнейший на планете ударный кратер это равнина Caloris Planitia (Равнина Жары) заполненный лавой. Его размеры 1525 х 1315 км, а столкнувшееся с Меркурием космическое тело было диаметром не менее ста километров.

Подобно Луне и внутренним планетам Солнечной системы на ранних этапах своего формирования Меркурий обладал поверхностью из жидкой магмы. Из-за этого более лёгкий графит накопился в его первоначальной коре, а потом оказался под вулканическими породами. При метеоритных и астероидных ударах графит выбивается из кратеров с образованием тёмных пятен на поверхности планеты.

Венера. Исследование этой планеты позволяет совершить путешествие в прошлое Земли. Масса Венеры составляет 81% от земной при сопоставимом диаметре в 12 тыс. км. Она раскалена, и средняя температура на поверхности планеты составляет +460 градусов Цельсия с небольшими суточными колебаниями.

Плотная раскалённая атмосфера с облаками из серной кислоты не позволяет вести наблюдения её поверхности в оптическом диапазоне электромагнитных волн. Поэтому используются методы радарной съёмки в радио — и микроволновом диапазонах и, частично, в инфракрасной области спектра. Поэтому сравнительно с Марсом о строении поверхности Венеры известно мало.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Катастрофы в природе: удар из космоса. Факты, причины, гипотезы, последствия предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я