1. Книги
  2. Личная эффективность
  3. Генрих Альтшуллер

Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Генрих Альтшуллер (1986)
Обложка книги

Постичь тайну творчества пытались многие, но только Генриху Сауловичу Альтшуллеру удалось создать стройную теорию решения изобретательских задач — ТРИЗ. Изучив десятки тысяч патентов и авторских свидетельств, Альтшуллер открыл основные законы изобретательства и показал, что процесс создания изобретений управляем. Процесс изобретательства требует правильной организации мышления, преодоления психологической инерции, стремления к идеальному решению, разрешения противоречия, скрытого в любой нестандартной задаче. ТРИЗ признана во всем мире и применяется для решения творческих задач во многих областях человеческой деятельности, начиная с конструирования и проектирования и заканчивая рекламой, PR, управлением. Книга будет интересна всем, кто стремится повысить эффективность творчества, и будет полезна не только изобретателям и инженерам, но и бизнесменам, менеджерам, людям творческих профессий, студентам и школьникам. 5-е издание.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

5. Новеллы о законах

Задача 5.1. Группа ученых под руководством П.Л. Капицы изучала поведение плазменного разряда в гелии. Установка (точнее, интересующая нас часть установки) представляла собой «бочку», положенную на бок. Внутри «бочки» находился газообразный гелий под давлением 3 атм. Под действием мощного электромагнитного излучения в гелии возникал плазменный шнуровой разряд, стягивающийся в сферический сгусток плазмы («шаровую молнию»). Для удержания этого сгустка в центральной части «бочки» использовали соленоид, кольцом охватывающий «бочку». В ходе опытов постепенно наращивали мощность электромагнитного излучения. Плазма становилась все горячее и горячее. Но с повышением температуры уменьшалась плотность плазменного шара. Молния поднималась вверх. Мощности соленоидного кольца явно не хватало. Сотрудники Капицы предложили строить новую установку — с более сильной соленоидной системой. Но Петр Леонидович Капица нашел другое решение. Как Вы думаете, какое?

Рассмотрим несколько изобретений.

А.с. 319460. Для обработки (овализации) зерен абразива предложено смешать зерна с ферромагнитными частицами и вращать смесь магнитным полем.

А.с. 333993. Для очистки проволоки от окалины предложено пропускать проволоку через абразивный ферромагнитный порошок, поджимаемый магнитным полем.

А.с. 387570. Для распыления полимерных расплавов предложено вводить в расплав ферромагнитные частицы и пропускать расплав через зону действия знакопеременного магнитного поля.

А.с. 523742. Для изгибания немагнитных труб предложено наполнять их ферромагнитным порошком и действовать магнитным полем.

А.с. 883524. Щит опалубки в виде гибкого «матраца», заполнен ферромагнитным материалом, твердеющим в магнитном поле.

А.с. 1068693. Мишень для стрельбы из лука из кольцевого электромагнита заполнена сыпучим ферромагнитным материалом.

Нетрудно подметить общий прием, использованный в этих изобретениях. Имеется некоторое вещество, само по себе не поддающееся управлению (изменению, обработке). Чтобы управлять веществом, вводят ферромагнитные частицы и действуют магнитным полем.

Задача 5.2. Для временного перекрытия трубопроводов путем образования пробки закачивают быстротвердеющий полимерный состав. Недостаток способа состоит в том, что жидкость до отвердевания растекается. Пробка получается неоправданно длинная, это усложняет ее извлечение после ремонта трубопровода. Как быть?

Возможно, эта задача раньше показалась бы нелегкой. Теперь ответ очевиден: надо ввести в полимерный состав ферромагнитные частицы и удерживать состав магнитным полем. Такое решение зафиксировано в а.с. 708108. Запишем это решение так, как записывают химические реакции. По условиям задачи дано вещество (полимерный состав), обозначим его буквой В. Пунктирной стрелкой покажем, что вещество плохо поддается управлению и надо научиться им управлять:

Запишем теперь ответ. Вводится магнитное поле Пм, действующее на ферромагнитный порошок Вф, который, в свою очередь, управляет В:

Соединим «дано» и «получено» двойной стрелкой, она заменит слова «для решения задачи надо перейти к»:

Было вещество В, которое плохо поддавалось непосредственному воздействию. Пришлось пойти в обход: взяли хорошо взаимодействующую пару «магнитное поле — ферропорошок» и объединили с имеющимся веществом в единую систему. Видно и противоречие, спрятанное в условиях задачи: поле не должно действовать на В (нет подходящих полей) и должно действовать на В (чтобы управлять им).

Запись «реакции» отражает суть всех изобретений, приведенных в начале раздела. В патентном фонде имеются тысячи изобретений, соответствующих этой «реакции». «Треугольник» из Пм, Вф и В получил название феполь (от слов «феррочастицы» и «поле»). Существуют, однако, другие поля и другие вещества, хорошо работающие в паре с ними.

А.с. 236279. Для сжатия порошка, заключенного в металлический корпус, используют охлаждение корпуса.

А.с. 359198. Для съема гребных винтов используют тяговые стержни, удлиняющиеся при нагревании.

А.с. 412428. Для точной регулировки клапана в вакуумном вентиле изменяют размеры штока клапана, пропуская внутри него охлаждающую жидкость.

А.с. 735256. Для микродозирования жидких лекарств нагревают воздух в полости пипетки.

Формула этих изобретений может быть записана так:

Дано плохо управляемое вещество — изделие B1. Чтобы обеспечить хорошую управляемость, надо перейти к системе, в которой тепловое поле Пт действует на вещество — инструмент В2, связанное с B1. Структуры из Пт, В2 и В1 получили название теполей.

В общем случае возможны структуры, включающие любое поле:

Такую структуру принято называть веполь (от слов «вещество» и «поле»). Нетрудно заметить, что веполь является схемой минимальной ТС: он включает изделие, инструмент и энергию (поле), необходимую для воздействия инструмента на изделие. Любую сложную техническую систему можно свести к сумме веполей. Тут уместна аналогия с геометрией: любую сложную фигуру можно разбить на треугольники. Зная свойства треугольников, можно производить вычисления, связанные со сложными фигурами. Отсюда особое значение тригонометрии. Аналогичную роль играет и вепольный анализ. Записывая условия задачи в вепольной форме, мы отбрасываем все несущественное, выделяя причины возникновения задачи, т. е. «болезни» технической системы, например, недостроенность веполя. Поэтому вепольный подход не только удобная символика для записи изобретательских «реакций», но и инструмент проникновения в глубинную суть задачи и отыскания наиболее эффективных путей преобразования технических систем.

Задача 5.3. Дана смесь одинаковых по размерам и имеющих одну и ту же плотность кусочков коры и древесины (разрубили на щепки кривой ствол, с которого нельзя было снять кору). Как отделить кору от древесины?

Конец ознакомительного фрагмента.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я