Учебное пособие содержит введение в финансовую математику. Оно описывает, что такое платежи, какие бывают процентные ставки наращения и дисконта, сложных и простых процентов, их связь, как рассчитывают стоимость потоков платежей, внутреннюю норму доходности, что такое аннуитет и другие вопросы. Книга будет полезна как студентам и аспирантам, изучающим финансовую математику, рассчитывающим доходность кредитов, банковских вкладов и инвестиционных проектов, так и специалистам-практикам, которые смогут найти в ней ответы на практические вопросы.
Приведённый ознакомительный фрагмент книги Введение в финансовую математику предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
1. Временная стоимость денег
Зададимся вопросом, эквивалентна ли для владельца денег одна и та же денежная сумма в два различных момента времени, например, сегодня и завтра?
Очевидно, что нет. Большинство незамедлительно ответит, что деньги сегодня предпочтительнее денег завтра. Это связано с тем, что получения той же самой суммы денег в будущем необходимо подождать до наступления этого будущего, т.е., во-первых, отказаться от возможности получить удовольствие от траты этих денег сегодня, а, во-вторых, принять на себя риск неполучения этих денег в будущем.
Значит, сознательно отказываясь от получения денег сегодня в пользу получения денег в будущем, т.е. разрешая кому-то другому пользоваться своими деньгами некоторый период времени, владелец денег имеет экономически обоснованное право получить вознаграждение за:
— время своего ожидания, т.е. за длящийся во времени отказ от своего права пользования денежными средствами, и
— за принятый на себя риск того, что обязательство может быть не выполнено в будущем.
Это вознаграждение, в свою очередь, может быть выражено в денежных единицах.
Пусть владелец денег отдает их в кредит в размере Р в момент времени t = 0, а получает их обратно вместе с вознаграждением в размере S в момент времени t = n, где под n будем понимать временной срок, выраженный в годах, n может быть нецелым. Тогда:
S = P + I, где:
P — первоначальная сумма вложений;
S — наращенная сумма;
I — процентный доход владельца денег (interest).
Приведённый ознакомительный фрагмент книги Введение в финансовую математику предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других