Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..
Приведённый ознакомительный фрагмент книги Алгоритм решения 10 проблемы Гильберта предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Решение проблемы
Самое известное уравнение Диофанта[3] это формула Пифагора[4].
Известны также так называемые «тройки Пифагора», целочисленные значения для неизвестных «a,b,c»
3,4,5; 5,12,13; 7,24,25 и т.д. Эти тройки имеют два сходства: первое — квадрат первого числа равен сумме двух других чисел, второе — разница между вторым и третьим числом равна 1. Следовательно, можно предположить, что это не случайные совпадения. Исходя из этого, составим равенства
Теперь, используя все эти формулы, составим уравнения
Подставим эти уравнения в формулу Пифагора
Получилось равенство значений правой и левой сторон уравнения. Это можно считать доказательством существования алгоритма нахождения натуральных значений «пифагоровых троек». Итак, обобщим формулы алгоритма и собственно получившийся алгоритм
Но эти формулы диофантовы лишь для нечетных чисел, хотя при постановке в формулы четных чисел для «а» также можно найти значения двух других чисел «b» «c», эти значения будут рациональными, но не целыми числами.
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Алгоритм решения 10 проблемы Гильберта предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других