Роман с Data Science. Как монетизировать большие данные

Роман Зыков, 2021

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru. Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики. В формате PDF A4 сохранен издательский макет.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Роман с Data Science. Как монетизировать большие данные предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Введение

Дайте мне точку опоры, и я переверну Землю.

Архимед

Дайте мне данные, и я переверну всю вашу жизнь.

Data Scientist Архимед

Данные повсюду — начиная от алгоритмов «Тиндера», который «матчит» вас с далеко не случайными людьми, и заканчивая информационными войнами, которые ведут политики. Никого уже не удивляет, что за каждым нашим шагом пристально следят: будь то история запросов в браузере телефона или ваши действия в офлайне. Задержитесь на секунду у витрины спортивного магазина — и ждите его таргетированную рекламу в соцсетях с минуты на минуту. Расскажите коллеге, что натворил ваш кот, — и вот сухие корма и наполнители уже тут как тут в вашей ленте.

Особо впечатлительные могут впасть в паранойю — но данные в этом не виноваты. Все зависит от того, в чьи руки они попадут. С анализом данных связано очень много мифов, а data scientist — одна из самых перспективных и «сексуальных» профессий будущего. В своей книге я намерен развенчать мифы и рассказать, как все обстоит на самом деле. Надеюсь, читатель, ты, как и я, окажешься на «светлой» стороне силы.

Я окончил МФТИ в начале нулевых и тогда же возглавил аналитический отдел интернет-магазина Ozon.ru, где создавал аналитические системы с нуля. Я консультировал инвестиционные фонды, гигантов ритейла и гейм-индустрии, а восемь лет назад стал сооснователем и совладельцем маркетинговой платформы для интернет-магазинов RetailRocket.ru. Сейчас компания не просто является безусловным лидером на рынке в России, но и успешно работает на рынках Чили, Голландии, Испании и Германии. В 2016 году я прочитал лекцию в концертном зале MIT в Бостоне про процессы тестирования гипотез. В 2020 году номинировался на премию CDO Award.

Считается, что нужно потратить 10 000 часов для того, чтобы стать очень хорошим специалистом в своей области. Анализом данных я занимаюсь с 2002 года, когда это не было так популярно и хайпово. Так вот, чтобы получить эти заветные 10 000 часов, нужно проработать 10 000 часов / 4 часа в день / 200 дней в году = 12.5 лет. Я в полтора раза превысил эту цифру, поэтому, надеюсь, получилось написать книгу, которая будет очень полезна для вас, дорогие читатели.

Эта книга о том, как превращать данные в продукты и решения. Она основывается не на академических знаниях, а на моем личном опыте анализа данных длиной почти в двадцать лет. Сейчас существует очень много курсов по анализу данных (data science) и машинному обучению (machine learning, ML). Как правило, они узкоспециализированы. Отличие этой книги в том, что она, не утомляя частностями, дает цельную картину и рассказывает о том:

• как принимать решения на основе данных;

• как должна функционировать система;

• как тестировать ваш сервис;

• как соединить все в единое целое, чтобы на выходе получить «конвейер» для ваших данных.

Для кого эта книга

Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе.

Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам она поможет расширить свой кругозор и начать применять практики, о которых вы раньше не задумывались — и это выделит вас среди профессионалов такой непростой и изменчивой области.

Как читать эту книгу

Я писал эту книгу так, чтобы ее можно было читать непоследовательно. Краткое содержание каждой главы:

Глава 1 «Как мы принимаем решения» описывает общие принципы принятия решения, как данные влияют на них.

Глава 2 «Делаем анализ данных» вводит общие понятия — с какими артефактами мы имеем дело, когда анализируем данные. Кроме того, с этой главы я начинаю поднимать организационные вопросы анализа данных.

Глава 3 «Строим аналитику с нуля» рассказывает об организации процесса построения аналитики: от первых задач и выбора технологии, заканчивая наймом.

Глава 4 «Делаем аналитические задачи» — полностью о задачах. Что такое хорошая аналитическая задача, как ее проверить. Технические атрибуты таких задач — датасеты, описательные статистики, графики, парный анализ, технический долг.

Глава 5 «Данные» о том, что говорят о данных — объемы, доступы, качество и форматы.

Глава 6 «Хранилища данных» рассказывает, зачем нужны хранилища, какие они бывают, также затрагиваются популярные системы для Big Data — Hadoop и Spark.

Глава 7 «Инструменты анализа данных», полностью посвящена наиболее популярным способам анализа от электронных таблиц в Excel до облачных систем.

Глава 8 «Алгоритмы машинного обучения» является базовым введением в машинное обучение.

Глава 9 «Машинное обучение на практике» является продолжением предыдущей главы: даются лайфхаки, как изучать машинное обучение, как работать с машинным обучением, чтобы оно приносило пользу.

Глава 10 «Внедрение ML в жизнь: гипотезы и эксперименты» рассказывает о трех видах статистического анализа экспериментов (статистика Фишера, байесовская статистика и бутстрэп) и об использовании А/Б-тестов на практике.

Глава 11 «Этика данных». Я не смог пройти мимо этой темы, наша область начинает все больше и больше регулироваться со стороны государства. Здесь поговорим о причинах этих ограничений.

Глава 12 «Задачи и стартапы» рассказывает об основных задачах, которые я решал в e-commerce, а также о моем опыте сооснователя проекта Retail Rocket.

Глава 13 «Строим карьеру» больше предназначена для начинающих специалистов — как искать работу, развиваться и даже когда уходить дальше.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Роман с Data Science. Как монетизировать большие данные предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я