1. книги
  2. Современные детективы
  3. Сергей Бакшеев

Математик

Сергей Бакшеев (2014)
Обложка книги

Гениальный математик Константин Данин выглядит ненормальным. Убита его мать, все улики против Данина. Однако бывшая учительница убеждена, что кто-то охотится за трудами математика, имеющими отношение к Великой теореме Ферма. История теоремы полна загадок, интриг и крахов. За ее доказательство обещана огромная премия, и всегда существовали люди, готовые продать душу за разгадку многовековой тайны. Книга также выходила под названием «Тайна точной красоты».

Автор: Сергей Бакшеев

Входит в серию: UNICUM

Жанры и теги: Современные детективы

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Математик» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

8
10

9

Пытливый семиклассник Костя Данин жадно дочитывал подаренную учительницей книжку о загадочной теореме Ферма. Десятки самых выдающихся математиков брались за ее доказательство. Некоторые продвигались вперед, получая важные промежуточные результаты. Но кому же их них достанется слава первооткрывателя? Кто сбросит завесу тайны и предъявит миру гармоничное и стройное доказательство? Оно должно быть безупречно красивым, не сомневался Костя.

Он пролистывал страницу за страницей, в предвкушении встречи с прекрасным решением. Но в последней главе его ждало жестокое разочарование. Ожидание не оправдалось. Книга не содержала полного доказательства Великой теоремы. Более того, сообщалось, что за несколько веков никто так и не сумел отыскать то «поистине удивительное доказательство», на которое намекал хитрый Ферма!

Юношеский максимализм подростка с трудом переваривал парадоксальный факт. Как это так, за три с половиной столетия наука достигла невиданных высот, люди пересели с телег на реактивные самолеты, расщеплен атом, покорена Луне, а тут простое уравнение из трех слагаемых остается нерешенным? Это противоречит всеобщему прогрессу!

Домашние задания были отброшены. С наивной смелостью и безграничным энтузиазмом Костя Данин тут же взялся за поиск доказательства. Уж он то, победитель городской математической олимпиады в конце двадцатого века владеет не меньшими знаниями, чем средневековый любитель математики из провинциального французского городка. Если решение загадки было подвластно дилетанту, то лучший ученик специализированной математической школы с ним наверняка справится!

А опытные математики? Почему они не добились успеха? Они чего-то не заметили, решил семиклассник.

Расчетливый Феликс Базилевич тоже просмотрел подаренную книгу. В отличие от Константина он бегло пролистал страницы, понял суть и сразу заглянул в конец. Теорема Ферма до сих пор не доказана! Ее величают самой великой загадкой математики. Первый, кто найдет доказательство, получит славу и денежную премию.

Феликс задумался. Для него это означало ответ на вопрос: как поступить, по-умному или по-хитрому? Практичный подросток уже давно сводил почти все свои жизненные проблемы к данному выбору. По-умному, означало самостоятельный упорный поиск решения с применением всех своих знаний и умений, а по-хитрому — поиск обходного варианта, использование доступных знакомств и подвернувшихся обстоятельств. Именно так, по-хитрому, он поступил и на городской олимпиаде, когда списал решение самой сложной задачи у Данина и получил почетное третье место. Если о теорему Ферма сломали зубы поколения высоколобых ученых, рассудил Феликс, то тратить на ее решение собственные силы тоже нецелесообразно. А вот увлечь ею гениального Данина и всегда быть рядом с ним, чтобы в случае успеха примкнуть в соавторы, гораздо эффективнее. Буду действовать по-хитрому, решил Базилевич.

Подталкивать Данина к теореме Ферма, однако не пришлось. Константин сам нырнул в водоворот формул как в живительный источник после изнурительного скитания. Он на добрых три недели зарылся в расчетах, часто пропускал уроки в школе, ему даже снились математические выкладки и, просыпаясь среди ночи, он хватался за бумагу, чтобы записать их. Но все решения оказывались с изъяном.

После нескольких бессонных ночей расстроенный семиклассник вынужден был признать, что его постигла печальная участь сотен других выдающихся математиков. Великая теорема оказалась неприступной. ВИ дружелюбно подтрунивала: кто ищет, тот всегда найдет, у тебя еще вся жизнь впереди. Костя хмурился, но от цели не отступил. Он сменил безудержный пыл на планомерное изучение успехов и ошибок предшественников.

Татьяна Архангельская, стремительно превращавшаяся из угловатой девчонки в кокетливую сочную девушку, почувствовала женской сущностью всплеск мужского интеллекта в вытянувшемся нескладном Константине. Это притягивало ее, и она использовала любой повод, чтобы быть рядом с ним. Когда по окончании восьмого класса прошло сообщение, что какой-то сумасшедший в Эрмитаже плеснул кислотой и изрезал картину Рембрандта, она потянула его в музей. «Пока психи всё не уничтожили, мы должны насладиться великими творениями», — шутила она.

Константин стоял в зале Рембрандта перед пустым местом на стене, под которым еще сохранилась табличка «Даная», и внутренне усмехался. Как же легко можно уничтожить рукотворную красоту. Искусство беззащитно перед руками вандалов. Картины и скульптуры требуют строгой охраны. Их стоимость исчисляется миллионами, а точные копии считаются дешевыми подделками. Но если не варвары, то безжалостное время всё равно не щадит их. Да что картины, каменные храмы подвержены разрушению. Века и стихия уничтожают всё. Даже знаменитые семь чудес света человечество не в силах было сохранить. Красота произведений искусства хрупка и недолговечна.

Иное дело изящные математические доказательства. Их красота не меркнет с годами, в них можно разбираться или не понимать, но их нельзя уничтожить. Даже если сжечь все до единой записи какого-нибудь решения, строгие логические выкладки останутся в умах математиков и легко могут быть восстановлены. Напыщенные умники, осуждающие то или иное направление искусства, не в силах опровергнуть истинность математического доказательства. Раз доказанное математическое утверждение никогда уже не исчезнет, никто его не извратит и не опровергнет. Бесследно сгинули шесть из семи чудес света, уничтожены или забыты десятки тысяч произведений искусства, считавшиеся некогда великими и неповторимыми, но теорема Пифагора две с половиной тысячи лет стоит незыблемо. Ее красота не тускнеет. Всё новые и новые варианты доказательства только украшают ее.

Татьяна Архангельская удивлялась потрясению обычно равнодушного к искусству Данина. Он надолго застыл около утерянной картины. На его лице отражалась борьба темной грусти и светлой надежды.

«Идем в другой зал. Там выставка золотых украшений, — настойчиво тянула его девушка. — Это безумно красиво». Константин бегло взглянул на потемневшие от времени полотна и безропотно пошел за Татьяной. Его уверенность в превосходстве математики обрела новые доводы.

Искусство противоречиво, думал он. Этого недостатка лишена царица наук математика. Когда хотят подчеркнуть необычайную ценность и красоту чего-либо, то сравнивают это с драгоценностями. Бриллианты, золото, изумруды — во все века их восхваляли и поклонялись им. Но драгоценности тоже не вечны. Их красоту можно уничтожить. Она однообразна и легко дублируется. Поэтому теорему Ферма глупо сравнивать с бриллиантом в короне математики. Скорее про самый огромный изумруд можно сказать, что он прекрасен, как доказательство теоремы Ферма. А с чем можно сравнить красоту математических выкладок? Только со светом солнца или сиянием вечных звезд.

Но даже математическая красота имеет разные степени. Если он когда-нибудь докажет Великую теорему Ферма, то это доказательство должно стать эталоном красоты в математике.

С таким убеждением Константин Данин покинул одну из самых выдающихся в мире коллекций произведений искусства.

В старших классах и на первом курсе университета он вновь и вновь возвращался к теореме Ферма. Он изучил все методы и ошибки предшественников, постиг в совершенстве теорию чисел. Порой ему казалось, что он нащупал верное решение, но каждый раз оно коварным образом ускользало. Пьер де Ферма продолжал насмехаться над ним, как и над сотнями гениальных предшественников.

Уже достаточно опытный математик Константин Данин стал склоняться к мысли, что имеющихся на сегодняшний день знаний недостаточно. Для доказательства Великой теоремы необходим качественный рывок. Надо разработать совершенно новый метод или целый раздел математики.

10
8

О книге

Автор: Сергей Бакшеев

Входит в серию: UNICUM

Жанры и теги: Современные детективы

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Математик» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я