Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое. Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы. Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.
Приведённый ознакомительный фрагмент книги Как учится машина. Революция в области нейронных сетей и глубокого обучения предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Глава 2
Краткая история искусственного интеллекта… и моего карьерного пути
Вечный поиск
Американский автор Памела Маккордак заметила как-то, что история искусственного интеллекта начинается с «извечного желания играть в Бога». Издавна человек пытается сконструировать устройства, создающие иллюзию жизни. В XX веке достижения науки дали надежду на механизацию мыслительного процесса. С появлением первых роботов и компьютеров в 1950-х гг. некоторые утописты предсказывали, что вычислительные машины быстро достигнут уровня человеческого интеллекта. Фантасты описали такие компьютеры во всех подробностях, но на сегодняшний день мы еще далеки от их воплощения в реальность.
Прогресс на этом долгом пути зависит от технических инноваций: более быстрые процессоры, более емкие устройства памяти. В 1977 г. у суперкомпьютера Cray-1 вычислительная мощность составляла 160 MFLOPS (мегафлопс). Он весил 5 т, потреблял 115 кВт·ч и стоил 8 млн долларов. На сегодняшний день игровая видеокарта стоимостью 300 евро, которую можно найти в компьютере у каждого второго увлеченного видеоиграми школьника, обеспечивает скорость 10 TFLOPS (терафлопс), или в 60 000 раз больше. Скоро любой смартфон сможет похвастаться такой мощностью.
История искусственного интеллекта в современном понимании берет начало с Дартмутского семинара, на котором впервые и прозвучал сам термин «искусственный интеллект». Семинар проходил летом 1956 г. в Дартмутском колледже недалеко от Ганновера, штат Нью-Гэмпшир, и был организован двумя исследователями — Марвином Мински и Джоном МакКарти. Марвин Мински был увлечен концепцией самообучающейся машины. В 1951 г. он в компании еще одного студента из Принстона построил одну из первых подобных машин, SNARC, небольшую электронную нейронную сеть с 40 «синапсами», способную к элементарному обучению. Джон МакКарти, в свою очередь, изобрел LISP, язык программирования, широко используемый в разработке ИИ.
Джону МакКарти также приписывают применение графов для создания шахматных программ. В работе семинара приняло участие около 20 исследователей, в том числе Клод Шеннон, инженер-электротехник и математик из Bell Labs (лаборатории гигантской телефонной компании AT&T в Нью-Джерси), Натан Рочестер из IBM и Рэй Соломонофф — основоположник концепции машинного обучения.
Участники бурно обсуждали области, движимые зарождающимися автоматизированными вычислениями и кибернетикой: изучение правил в естественных и искусственных системах, сложная обработка информации, искусственные нейронные сети, теория автоматов… На этом небольшом семинаре были разработаны и декларированы основные принципы и подходы к созданию искусственного интеллекта. Сам термин предложил все тот же Джон МакКарти.
Логика превыше всего
В настоящее время часть ученых представляет себе интеллектуальные машины, работающие только на основе логики и использующие для этого деревья поиска и экспертные системы. Инженер вводит в систему данные и правила их обработки, а система извлекает из них результаты вычислений или анализа. Более широкая цель ученых заключается в создании машины, способной заменить человека в сложных рассуждениях. Аллан Ньюэлл и Герберт Саймон из Университета Карнеги-Меллона в Питтсбурге первыми разработали программу Logic Theorist («Логический теоретик»), которая умела доказывать простые математические теоремы, исследуя дерево поиска, составленное из преобразований математических формул. Это было прекрасное время.
Однако через некоторое время тематика ИИ надолго погрузилась в спячку. В 1970 г. Агентство Министерства обороны США ARPA[11] сократило бюджеты фундаментальных исследований в области ИИ. Три года спустя, после отчёта Лайтхилла, который дал крайне пессимистические прогнозы для будущих исследований в области искусственного интеллекта, Великобритания сделала то же самое. Нет денег — нет исследований…
Процесс сдвинулся с мертвой точки в начале 1980-х. В то время большие надежды подавали экспертные системы, и Япония запустила амбициозный проект по созданию «компьютера пятого поколения», который должен был интегрировать навыки логического мышления в саму его конструкцию. Он должен был уметь вести беседу, переводить тексты, интерпретировать изображения и, возможно, даже рассуждать, как человек. К сожалению, эта идея себя не оправдала. Разработка и коммерциализация экспертных систем, таких как MYCIN, о которой мы уже говорили, оказались намного сложнее, чем ожидалось.
Идея поставить рядом с врачами или инженерами когнитологов (специалистов по восприятию и познанию), пытавшихся записать ход их мыслей или рассуждений в процессе диагностики болезни или неисправности, не сработала. Это опять оказалось сложнее, дороже и вовсе не так надежно, как предполагалось вначале, и к тому же упрощало знания и опыт, накопленные специалистом, до примитивного набора правил.
С этим «классическим» интеллектом, который так трудно воспроизвести, связаны алгоритмы на графах, которые тоже имели в свое время оглушительный успех.
Игровой мир
В 1997 г. чемпиона мира по шахматам Гарри Каспарова пригласили в Нью-Йорк принять участие в матче из шести партий против Deep Blue, суперкомпьютера, созданного транснациональной корпорацией IBM, — монстра высотой почти 2 м и весом 1,4 т. В шестой, заключительной партии матча, которую предваряли три ничьи и по одной победе с каждой стороны, Гарри Каспаров сдался уже на двадцатом ходу. Он признался, что был поражен и побежден вычислительной мощью машины.
Давайте на минутку остановимся на устройстве Deep Blue. В компьютере было 30 процессоров, дополненных 480 схемами, специально разработанными для проверки позиций на шахматной доске. Обладая такой вычислительной мощностью, машина могла оценивать качество примерно 200 млн позиций на доске в секунду, используя классические алгоритмы деревьев поиска.
Несколько лет спустя, 14, 15 и 16 февраля 2011 г., после трех раундов игры компьютер IBM Watson одержал победу в американской игре-викторине — Jeopardy! Аватар компьютера, размещенный между двумя чемпионами, представлял собой земной шар, покрытый световыми лучами. Программа, написанная учеными-компьютерщиками, удаляла из вопроса ненужные слова (артикли, предлоги…), определяла значимые слова и искала эти слова в огромном количестве текстов, порядка 200 млн страниц, определяя там те предложения, в которых можно было найти ответ.
Эти тексты, а именно вся Википедия, энциклопедии, словари, тезаурусы, сообщения информационных агентств, литературные произведения, хранились в его оперативной памяти объемом 16 терабайт[12] (жесткие диски были бы слишком медленными для таких задач). Сотни тысяч объектов и имен собственных сформировали большой список записей, каждая из которых относилась к определенной статье Википедии, веб-странице или тексту, где она появилась… Система Watson проверяла, существует ли документ, в котором присутствует часть ключевых терминов вопроса. После этой проверки проблема сводилась к нахождению правильного ответа в статье.
Например, если бы вопрос звучал так: «Где родился Барак Обама?», система Watson знала, что ответом будет название места. В ее базе данных был список всех документов, в которых упоминался Барак Обама. Поэтому где-нибудь обязательно нашлась бы статья со словами «Обама», «родился» и «Гавайи». Затем машине просто нужно было выбрать слово «Гавайи», соответствующее ответу. Watson, по сути, состояла из системы быстрого поиска информации в сочетании с хорошей индексацией данных. Но эта система не понимала смысла вопроса. Она вела себя как школьник, выполняющий домашнее задание с открытой книгой (или открытой Википедией!). На заданный вопрос она может найти правильный ответ в учебнике и переписать его, ничего не понимая в том, что пишет.
В 2016 г. появляется еще одно достижение. В Сеуле южнокорейский чемпион по игре в го был побежден своим компьютерным противником AlphaGo, внушительной системой, разработанной DeepMind, дочерней компанией Google. Восемнадцатикратный чемпион мира Ли Седоль проиграл машине четыре игры из пяти. В отличие от Deep Blue, AlphaGo была «обучена». Она тренировалась, играя против самой себя, сочетая при этом несколько хорошо известных методов: сверточные сети, усиленное обучение и метод Монте-Карло для поиска в дереве, метод «рандомизированных деревьев поиска». Впрочем, не будем забегать вперед.
Нейробиология и перцептрон
В 1950-х гг., когда «великие магистры» классического искусственного интеллекта, основанного на логике и графах, раздвинули границы его применения, пионеры машинного обучения сформулировали альтернативные идеи. Они были уверены, что логики недостаточно, чтобы компьютерные системы были способны решать сложные задачи. Необходимо было приблизиться к функционированию мозга и тем самым сделать системы способными программировать самих себя, опираясь на механизмы обучения мозга. Это направление основано на так называемом «глубоком обучении» (deep learning) и искусственных нейронных сетях, — именно в этой области я и работаю. На подобных механизмах основана работа большинства продвинутых современных приложений, включая автономные автомобили.
Происхождение метода относится к середине прошлого века. Еще в 1950-х гг. пионеры искусственного интеллекта поддерживали теории, разработанные Дональдом Хеббом, канадским психологом и нейробиологом, который, в частности, размышлял о роли нейронных связей в обучении. Вместо того чтобы воспроизводить логические цепочки человеческих рассуждений, почему бы не исследовать их носитель, этот потрясающий биологический процессор, которым является мозг?
Таким образом, исследователи вычислений сконцентрировались на нейронном способе обработки информации в отличие от ранее применявшейся логической, или «последовательной», обработки. Они нацелились на моделирование биологических нейронных цепей. Машинное обучение, на которое были направлены их усилия, основывалось на оригинальной архитектуре, сети математических функций, которые по аналогии называют «искусственными нейронами».
Они улавливают входной сигнал, и нейроны в сети обрабатывают его таким образом, что на выходе этот сигнал идентифицируется. Сложность операции, например, распознавание образов, поддерживается комбинированным взаимодействием очень простых элементов, а именно искусственных нейронов. Так и в нашем мозге взаимодействие основных функциональных единиц — нейронов — порождает сложные мысли.
Возникновение описываемой концепции датируется 1957 г.: в том же году в Корнельском университете психолог Фрэнк Розенблатт, вдохновленный когнитивной теорией Дональда Хебба, построил перцептрон — первую обучающуюся машину. Мы рассмотрим ее в следующей главе, так как она являются эталонной моделью машинного обучения. После обучения перцептрон способен, например, распознавать образы (геометрические фигуры, буквы и т. д.).
В 1970-х гг. два американца, Ричард Дуда, в то время профессор электротехники в Университете Сан-Хосе (Калифорния), и Питер Харт — ученый-компьютерщик из SRI (Стэнфордского исследовательского института) в Менло-Парке (Калифорния), обсуждали все эти так называемые методы «распознавания статистических форм[13]», примером которых является перцептрон. С самого начала их руководство стало мировым эталоном, Библией распознавания образов для всех студентов… и для меня тоже.
Но перцептрон далеко не всесилен. Система, состоящая из одного слоя искусственных нейронов, имеет «врожденные» ограничения. Исследователи пытались увеличить его эффективность, вводя несколько слоев нейронов вместо одного. Но без алгоритма обучения слоев, который к тому моменту еще не был известен, такие машины все еще оставались очень малоэффективными.
Эпоха застоя
Перейдем к кому времени, когда в 1969 г. Сеймур Паперт и Марвин Мински — тот самый, который в 1950-х гг. увлекался искусственными нейронными сетями, прежде чем отречься от них, опубликовали книгу «Перцептроны: Введение в вычислительную геометрию»[14]. Они математически доказали пределы возможностей перцептрона, и некоторые из доказанных ими ограничений по сути поставили крест на использовании этой и подобных машин.
Казалось, развитие уперлось в непреодолимую стену. Эти два профессора Массачусетского технологического института пользовались большим авторитетом, так что их работа наделала много шума. Агентства, финансирующие исследования, прекратили поддержку исследовательских работ в этой области. Как и исследования в GOFAI, исследования нейронных сетей пережили серьезный застой.
В этот период большинство ученых перестали говорить о создании умных машин, способных к обучению. Они предпочитали ограничивать свои амбиции более приземленными проектами. Используя методы, унаследованные от нейронных сетей, они создали, например, «адаптивную фильтрацию» — процесс, лежащий в основе многих коммуникационных технологий в современном мире. Прежде физические свойства проводных линий связи сильно ограничивали передачу высокочастотных сигналов, приводя к их существенным искажениям уже на расстоянии нескольких километров. Теперь сигнал восстанавливается с помощью адаптивного фильтра. Используемый алгоритм называется Luckyʼs Algorithm в честь его изобретателя Боба Лаки, который в конце 1980-х руководил отделом Bell Labs, где тогда работало около 300 человек. в том числе и я.
Без адаптивной фильтрации у нас не было бы телефона с громкой связью, который позволяет вам говорить в микрофон без самовозбуждения, происходящего от усиления микрофоном звука громкоговорителя (когда это случается, мы слышим громкий вой или свист). В эхокомпенсаторах, кстати, используются алгоритмы, очень похожие на алгоритм перцептрона.
Не появился бы без этой технологии и модем[15]. Это устройство позволяет одному компьютеру коммуницировать с другим компьютером по телефонной линии или иной линии связи.
Преданные последователи
Тем не менее, и во времена застоя в 1970-х и 1980-х гг. некоторые ученые продолжали работать над нейронными сетями, хотя научное сообщество считало их сумасшедшими, чуть ли не фанатиками. Я имею в виду Теуво Кохонена, финна, который написал об «ассоциативных воспоминаниях» — теме, близкой к нейронным сетям. Я также говорю и о группе японцев — в Японии существует изолированная инженерная экосистема, отличная от западной, — и среди них о математике Сун-Ити Амари и исследователе искусственного интеллекта Кунихико Фукусима. Последний работал над машиной, которую он назвал «когнитроном», по аналогии с термином «перцептрон». Он создал две его версии: «когнитрон» 1970-х и «неокогнитрон» 1980-х. Как и Розенблатт в свое время, Фукусима был вдохновлен достижениями нейробиологии, особенно открытиями американца Дэвида Хьюбела и шведа Торстен Н. Визеля.
Эти два нейробиолога получили Нобелевскую премию по физиологии в 1981 г. за свою работу над зрительной системой кошек. Они обнаружили, что зрение возникает в результате прохождения визуального сигнала через несколько слоев нейронов, от сетчатки до первичной зрительной коры, затем в другие области зрительной коры, и, наконец — в нижневисочную кору. Нейроны в каждом из этих слоев выполняют особые функции. В первичной зрительной коре каждый нейрон связан только с небольшой областью поля зрения, а именно со своим рецепторным полем. Такие нейроны называются «простыми». В следующем слое другие нейроны включают активацию предыдущего слоя, что помогает поддерживать представление изображения, если объект немного перемещается в поле зрения. Такие нейроны называются «сложными».
Таким образом, Фукусима был вдохновлен идеей первого слоя простых нейронов, которые обнаруживают простые узоры в небольших рецепторных полях, выдающих изображение, и сложных нейронов в следующем слое. Всего в неокогнитроне было пять слоев: простые нейроны — сложные нейроны — простые нейроны — сложные нейроны, и затем «классификационный слой», подобный перцептрону. Он, очевидно, использовал для первых четырех уровней некоторый алгоритм обучения, но последний был «неконтролируемым», то есть он не принимал во внимание конечную задачу. Такие слои обучались «вслепую». Только последний слой обучался под наблюдением (как и перцептрон). У Фукусимы не было алгоритма обучения, который регулировал бы параметры всех слоев его неокогнитрона. Однако его сеть позволяла распознавать довольно простые формы, например, символы чисел.
В начале 1980-х гг. идеи Фукусимы поддерживали и другие ученые. Некоторые североамериканские исследовательские группы также работали в этой области: психологи Джей Макклелланд и Дэвид Румелхарт, биофизики Джон Хопфилд и Терри Сейновски, и ученые-компьютерщики, в частности Джеффри Хинтон — тот самый, с которым я впоследствии разделю Премию Тьюринга, присужденную в 2019 г.
Мой выход на сцену
Я начал интересоваться всеми этими темами в 1970-х гг. Возможно, любопытство к ним зародилось во мне еще, когда я наблюдал за моим отцом, авиационным инженером и мастером на все руки, который в свободное время занимался электроникой. Он строил модели самолетов с дистанционным управлением. Я помню, как он сделал свой первый пульт для управления небольшой машиной и лодкой во время забастовок в мае 1968 г., когда он проводил много времени дома. Я не единственный в семье, кому он передал свою страсть к любимому делу. Мой брат, который на шесть лет младше меня, тоже сделался ученым-компьютерщиком. После академической карьеры он стал исследователем в компании Google.
С самого раннего детства меня манили новые технологии, компьютеризация, покорение космоса… Еще я мечтал стать палеонтологом, потому что меня очень интриговал человеческий интеллект и его эволюция. Даже сегодня я по-прежнему верю, что работа нашего мозга остается самой загадочной вещью в мире. Я помню, как в Париже на большом экране я вместе с моими родителями, а также дядей и тетей — «фанатами» научной фантастики, смотрел фильм «2001: Космическая одиссея». Мне было тогда восемь лет. Фильм затронул все, что я любил: космические путешествия, будущее человечества и восстание суперкомпьютера «Хэл», который готов был убивать ради собственного выживания и успеха миссии. Уже тогда меня волновал вопрос о том, как воспроизвести человеческий интеллект в машине.
Неудивительно, что после школы я захотел воплотить эти мечты в жизнь. В 1978 г. я поступил в Парижскую высшую школу электронной инженерии (École Supérieure d'Ingénieurs en Électrotechnique et Électronique, ESIEE) в которую можно подавать заявление сразу после получения степени бакалавра, без затрат времени на дополнительную подготовку. (Откровенно говоря, длинная учеба — не единственный способ добиться успеха в науке. Я могу это подтвердить на своем примере.) А поскольку учеба в ESIEE предоставляет студенту некоторую свободу, я сумел воспользоваться этим.
Плодотворное чтение
Меня воодушевили новости о дебатах на конференции Cerisy о врожденном и приобретенном знании[16], прочитанные мною в 1980 г. Лингвист Ноам Хомски подтвердил, что в мозге существуют исходно заложенные структуры, позволяющие человеку научиться языку. Психолог Жан Пиаже защищал идею о том, что любое обучение задействует определенные, уже существующие структуры мозга, и что овладение языком осуществляется поэтапно по мере того, как формируется интеллект. Таким образом, интеллект будет результатом обучения, основанного на обмене информацией с внешним миром. Эта идея мне понравилась, и мне стало интересно, как ее можно применить в отношении машины. В этой дискуссии принимали участие именитые ученые, в том числе Сеймур Паперт. В ней он восхвалял перцептрон, который описывал как простую машину, способную обучаться сложным задачам.
Так я и узнал о существовании обучающейся машины. Эта тема меня просто очаровала! Поскольку я не учился по средам после обеда, я начал рыскать по полкам библиотеки Национального института компьютерных и автоматических исследований в Роккенкуре (National Institute for Research in Digital Science and Technology, сокращенно «Inria»). У этого учреждения самый богатый библиотечный фонд ИТ-литературы в Иль-де-Франс. Я вдруг понял, что на Западе больше никто не работает с нейронными сетями, и с еще большим удивлением обнаружил, что книга, положившая конец исследованиям перцептрона, принадлежит перу того же самого Сеймура Паперта!
Теория систем, которую в 1950-х гг. мы называли кибернетикой, и которая изучает естественные (биологические) и искусственные системы — еще одна моя страсть. Возьмем, например, систему регулирования температуры тела: организм человека поддерживает температуру 37 ℃ благодаря наличию своеобразного «термостата», который корректирует разницу между своей температурой и температурой снаружи.
Меня увлекла идея самоорганизации систем. Каким образом относительно простые молекулы или объекты могут спонтанно организовываться в сложные структуры? Как может появиться интеллект из большого набора простых взаимодействующих нейронов?
Я изучал математические работы по теории алгоритмической сложности Колмогорова, Соломонова и Чайтина. Книга Дуды и Харта[17], о которой я уже упоминал, стала для меня настольной. Я читал журнал «Биологическая кибернетика» («Biological Cybernetics. Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems», издательство Springer), посвященный математическим моделям работы мозга или живых систем.
Все эти вопросы, оставленные без ответа в период застоя искусственного интеллекта, не выходили у меня из головы, и у меня постепенно стало формироваться убеждение: если мы хотим создавать интеллектуальные машины, недостаточно, чтобы они работали только логически, они должны быть способными учиться, совершенствоваться на собственном опыте.
Читая все эти труды, я понимал, что часть научного сообщества разделяет мое виденье проблемы. Вскоре я познакомился с работами Фукусимы и задумался о способах повышения эффективности нейронных сетей неокогнитрона. К счастью, ESIEE предоставлял студентам компьютеры, которые для того времени были очень мощными. Мы писали программы с Филиппе Метсу, школьным другом, любителем искусственного интеллекта, как и я, хотя его больше интересовала психология обучения детей. Преподаватели математики согласились заниматься с нами дополнительно. Вместе мы пытались моделировать нейронные сети. Но эксперименты отнимали очень много сил: компьютеры не тянули наши эксперименты, а написание программ было сплошной головной болью.
На четвертый год обучения в ESIEE, одержимый этим исследованием, я догадался о не совсем математически обоснованном правиле обучения многослойных нейронных сетей. Я представил алгоритм, который будет распространять сигналы в обратном направлении по сети, начиная с выходного слоя, чтобы обучать сеть от начала до конца. Я назвал этот алгоритм HLM (от Hierarchical Learning Machine)[18].
Я очень гордился своей идеей… HLM является предшественником алгоритма «обратного распространения градиента», который сегодня повсеместно используется для обучения систем глубокого обучения. Вместо распространения обратных градиентов в сети, как это происходит сегодня, HLM распространял желаемые состояния для каждого нейрона. Это позволяло использовать бинарные нейроны, что являлось преимуществом, учитывая медлительность компьютеров того времени для выполнения умножения. HLM был первым шагом в обучении многоуровневых сетей.
Коннекционистские модели обучения
Летом 1983 г. я получил высшее образование по специальности «инженер». Тогда же я наткнулся на книгу, в которой рассказывалось о работе небольшой группы французов, интересующихся самоорганизующимися системами и сетями автоматов. Они экспериментировали в бывшем помещении Политехнической школы на холме Святой Женевьевы в Париже. Эта лаборатория сетевой динамики (Laboratoire de dynamique de réseau, или LDR) была независимой, хотя ее члены занимали должности в разных высших учебных заведениях. У них было мало денег, не было планового бюджета, а их компьютер нуждался в ремонте. Это означало, что исследования машинного обучения во Франции висят на волоске! Я решил примкнуть к ним. Я мог реально помочь им, потому что эти ученые не занимались изучением старых публикаций по нейронным сетям, как это делал я.
Я решил объяснить им, что меня интересует эта тема и что в своей инженерной школе я занимаюсь схожей тематикой. Я работал в их группе, продолжая учебу в аспирантуре в Университете Пьера и Марии Кюри. В 1984 г. мне нужно было подать заявление на защиту докторской диссертации. Я занимал должность младшего научного сотрудника ESIEE по гранту, но мне нужно было найти себе научного руководителя. Много времени я работал с Франсуазой Фогельман-Суле (сейчас Сули-Фогельман), которая в то время преподавала компьютерные науки в Университете Париж-V и, по логике вещей, именно она должна была бы курировать мою диссертацию, но у нее не было на это полномочий, поскольку она еще не прошла государственную сертификацию на право руководить аспирантами (необходимую во многих европейских странах).
Поэтому я обратился к единственному члену лаборатории, который мог курировать диссертацию по информатике, — Морису Милграму, профессору информатики и инженерии Технологического университета Компьена. Он согласился, но дал понять, что не сможет мне сильно помочь, потому что ничего не знает о нейронных сетях, но я и так был безмерно благодарен ему за эту помощь. Поэтому я посвятил свое время одновременно ESIEE (и ее мощным компьютерам) и LDR (и ее интеллектуальной среде). Я попал на ранее неизвестную мне территорию, и это было интересно.
За рубежом исследования, близкие к моим, набирали обороты. Летом 1984 г. я сопровождал Франсуазу Фогельман в Калифорнию, где прошел месячную стажировку в известной многим лаборатории Xerox PARC.
В то время, я помню, в мире было два человека, с которыми я мечтал встретиться: Терри Сейновски — биофизик и нейробиолог из Университета Джона Хопкинса в Балтиморе, и Джеффри Хинтон из Университета Карнеги-Меллон в Питтсбурге — тот самый, кто поделит с Йошуа Бенджио и мной Премию Тьюринга в 2019 г. В 1983 г. Хинтон и Сейновски опубликовали статью о машинах Больцмана[19], которая содержит процедуру обучения сетей со «скрытыми нейронами», то есть нейронами в промежуточных слоях между входом и выходом. Я увлекся этой статьей именно потому, что в ней говорилось об обучении многослойных нейронных сетей. «Главный» вопрос в моей работе! Эти люди сыграли важную роль в моей жизни!
Лез-Уш
Моя профессиональная жизнь изменилась в феврале 1985 г. во время конференции в Лез-Уш, в Альпах. Там я встретился с лучшими представителями мировой науки, интересующимися нейронными сетями: физиками, инженерами, математиками, нейробиологами, психологами и, в частности, членами новой развивающейся исследовательской группы в области нейронных сетей, которая сформировалась внутри легендарной лаборатории Bell Labs. Через три года я попал в эту группу благодаря знакомствам, которые приобрел в Лез-Уш.
Встреча была организована теми французскими исследователями из LDR, с которыми я уже работал: Франсуазой, ее тогдашним мужем Жераром Вайсбухом, профессором физики ENS, и Эли Биненштоком — нейробиологом-теоретиком, работавшим в то время в CNRS. Конференция собрала вместе физиков, интересующихся «спиновыми стеклами», а также ведущих физиков и нейробиологов.
Спин — это свойство элементарных частиц и атомов, которое можно описать по аналогии с маленькими магнитами, с обращенными вверх или вниз полюсами. Эти два значения спина можно сравнить с состояниями искусственного нейрона: он либо активен, либо неактивен. Он подчиняется тем же уравнениям. Спиновые стекла представляют собой своего рода кристалл, в котором примесные атомы имеют магнитный момент. Каждый спин взаимодействует с другими спинами на основе связанных весовых показателей.
Если весовой коэффициент положительный, они, как правило, выстраиваются в одном направлении. Если вес отрицательный, они противопоставляются. Мы связываем значения +1 со спином «вверх», а — 1 со спином «вниз». Каждый примесный атом принимает ориентацию, которая является функцией взвешенной суммы ориентаций соседних примесных атомов. Другими словами, функция, определяющая, будет ли спин идти вверх или вниз, аналогична функции, которая делает искусственный нейрон активным или неактивным.
После основополагающей статьи Джона Хопфилда[20], в которой были описаны аналогии между спиновыми стеклами и искусственными нейронными сетями, многие физики начали интересоваться и самими сетями, и их обучением — темами, по-прежнему не приветствовавшимися их коллегами — инженерами и компьютерщиками.
В Лез-Уш я был одним из самых молодых исследователей, и мне пришлось общаться на английском языке о многоуровневых сетях и алгоритме HLM, моем предшественнике алгоритмов обратного распространения. Я только начал подготовку своей диссертации, и нервничал, выступая перед столь именитой аудиторией.
Меня особенно привлекли две личности: Ларри Джекел, глава отдела Bell Labs (позже мне самому довелось работать в этом отделе) и Джон Денкер — настоящий ковбой из Аризоны: джинсовый костюм, большие бакенбарды, ковбойские сапоги… Этот не очень похожий на ученого человек, только что защитивший диссертацию, был невероятно уверен в себе! Когда на него находило вдохновение, он мог быть чертовски убедителен и изобретательно отстаивал свою точку зрения, причем без агрессии и часто вполне обоснованно. Франсуаза Фогельман говорила мне: «У ребят из Bell Labs огромное преимущество. Когда вы только хотите сделать что-то новое, то выясняется, что это либо уже было сделано в Bell Labs десять лет назад, либо это просто не работает». Черт возьми!
Конец ознакомительного фрагмента.
Приведённый ознакомительный фрагмент книги Как учится машина. Революция в области нейронных сетей и глубокого обучения предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
11
Агентство перспективных исследовательских проектов, которое в 1972 г. переименовали в DARPA (Агентство перспективных оборонных исследовательских проектов), является агентством Министерства обороны по финансированию проектов исследований и разработок (НИОКР).
12
Терабайт — это единица измерения количества цифровой информации, здесь используется в качестве единицы измерения объема памяти. Он составляет 240 байт. Один байт может иметь 256 различных значений.
14
Marvin L. Minsky, Seymour A. Papert, Perceptrons: An Introduction to Computional Geometry, The MIT Press, 1969.
15
Устройство, состоящее из модулятора и демодулятора, предназначенное для передачи цифровых данных по телефону или по коаксиальному кабелю.