Сверточные нейронные сети (CNN) представляют собой один из самых значительных прорывов в области искусственного интеллекта и машинного обучения. Они стали фундаментом множества современных приложений, от распознавания изображений и видео до автономных систем и обработки естественного языка. Эта книга предлагает руководство по изучению и применению CNN, охватывая как базовые, так и продвинутые концепции. Книга подробно рассматривает ключевые элементы CNN, такие как свертка, функции активации, пулинг и нормализация. Вы узнаете, как эти элементы работают вместе, создавая мощные архитектуры, способные извлекать иерархические представления из данных. Исторический обзор эволюции CNN, от первых моделей до современных архитектур, таких как AlexNet, VGG, GoogLeNet, ResNet и EfficientNet, помогает понять, как и почему эти сети стали столь эффективными.
Приведённый ознакомительный фрагмент книги «Сверточные нейросети» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
Предисловие
Добро пожаловать в мир сверточных нейронных сетей (CNN), одну из самых захватывающих и динамично развивающихся областей искусственного интеллекта и машинного обучения. В этой книге мы постараемся шаг за шагом раскрыть секреты этой технологии, от основ до самых современных и сложных подходов. В последние годы CNN сыграли ключевую роль в прорывах в таких областях, как распознавание изображений, обнаружение объектов и даже генерация нового контента. Независимо от того, являетесь ли вы новичком в этой области или опытным исследователем, эта книга предназначена для того, чтобы помочь вам понять принципы и возможности сверточных сетей, а также научить применять их на практике.
Сверточные нейронные сети изменили ландшафт машинного обучения и стали фундаментом многих современных приложений, от автономных транспортных средств до медицинской диагностики и прогнозирования климатических изменений. Интерес к этой области продолжает расти благодаря её высокой эффективности и универсальности.
Однако с ростом возможностей растет и сложность. В мире глубокого обучения существует множество техник и архитектур, каждая из которых имеет свои преимущества и особенности. Наша цель — провести вас через этот сложный лабиринт, помогая понять не только как использовать CNN, но и почему они работают именно так.
Мы начнем с основ, чтобы заложить прочную теоретическую базу, затем перейдем к более продвинутым темам, таким как различные архитектуры CNN, методы регуляризации и нормализации, а также применению этих сетей в реальных задачах. Вы также узнаете о лучших практиках подготовки данных и настройки гиперпараметров, чтобы ваши модели работали максимально эффективно.
В конце концов, понимание и использование CNN потребует усилий, но награда — способность решать сложные задачи и создавать инновационные решения — стоит того. Приготовьтесь к увлекательному путешествию в мир сверточных нейронных сетей!
Приведённый ознакомительный фрагмент книги «Сверточные нейросети» предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других