1. Книги
  2. Программирование
  3. Джейд Картер

120 практических задач

Джейд Картер (2024)
Обложка книги

В книге представлены 120 задачч из различных областей, включая анализ данных, прогнозирование, классификацию, распознавание образов и другие. В каждой задаче рассматривается использование глубокого обучения и нейронных сетей для решения, включая выбор архитектуры модели, подготовку данных, обучение и оценку результатов. Примеры кода на Python помогают читателям легко освоить материал и применить его на практике.Книга предназначена для специалистов в области данных, исследователей, студентов и всех, кто интересуется применением современных методов глубокого обучения для решения разнообразных задач в науке, технологиях и бизнесе.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

23. Создание модели для определения пола и возраста по фотографии

Задача: Анализ изображений лиц для определения пола и возраста

Для решения задачи определения пола и возраста по фотографии лица можно использовать комбинацию глубоких сверточных нейронных сетей (CNN) и подходов, основанных на передаче обучения (transfer learning). Давайте рассмотрим основные шаги и архитектуру модели для такой задачи.

Построение модели для определения пола и возраста по фотографии

1. Подготовка данных

Процесс подготовки данных для анализа изображений лиц включает:

— Загрузку набора данных изображений лиц с разметкой пола и возраста.

— Предобработку изображений (масштабирование, нормализация и аугментация данных).

— Разделение данных на обучающую и тестовую выборки.

2. Построение модели с использованием CNN

Пример архитектуры модели с использованием CNN и transfer learning:

```python

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.applications import MobileNetV2

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.optimizers import Adam

# Параметры модели и обучения

input_shape = (224, 224, 3) # размер входного изображения (ширина, высота, каналы RGB)

num_classes_gender = 2 # два класса для пола (мужчина, женщина)

num_classes_age = 8 # возрастные группы (например, 0-10, 11-20 и т.д.)

# Загрузка предварительно обученной модели (MobileNetV2 без полносвязных слоев)

base_model = MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet')

# Замораживаем веса предварительно обученной модели

base_model.trainable = False

# Создание модели на основе MobileNetV2 и добавление своих слоев

model = Sequential()

model.add(base_model)

model.add(Conv2D(32, (3, 3), activation='relu'))

model.add(MaxPooling2D((2, 2)))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

# Для определения пола (бинарная классификация)

model.add(Dense(num_classes_gender, activation='softmax', name='gender_output'))

# Для определения возраста (многоклассовая классификация)

model.add(Dense(num_classes_age, activation='softmax', name='age_output'))

# Компиляция модели

model.compile(optimizer=Adam(lr=0.0001), loss={'gender_output': 'binary_crossentropy', 'age_output': 'categorical_crossentropy'}, metrics=['accuracy'])

# Вывод архитектуры модели

model.summary()

```

Пояснение архитектуры и процесса:

1. Предварительно обученная модель (Transfer Learning): В примере используется MobileNetV2, предварительно обученная на большом наборе данных ImageNet. Мы загружаем модель без полносвязных слоев (`include_top=False`) и замораживаем её веса, чтобы сохранить обучение, полученное на ImageNet.

2. Добавление собственных слоев: К предварительно обученной модели добавляются дополнительные сверточные (`Conv2D`) и полносвязные (`Dense`) слои. Эти слои помогают извлечь признаки из изображений и выполнить классификацию по полу и возрасту.

3. Функции активации: Для определения пола используется `softmax` с двумя выходами (мужчина и женщина), а для определения возраста также `softmax` с несколькими выходами (например, группы возрастов).

4. Компиляция и обучение модели: Модель компилируется с оптимизатором Adam и функциями потерь `binary_crossentropy` для пола и `categorical_crossentropy` для возраста, соответствующими задачам классификации.

Преимущества использования подхода с использованием transfer learning:

— Использование общих признаков: Transfer learning позволяет использовать знания, полученные на больших наборах данных, для задачи распознавания лиц.

— Улучшение производительности: Использование предварительно обученной модели улучшает производительность и скорость обучения на относительно небольшом наборе данных для задачи определения пола и возраста.

— Адаптивность к различным типам данных: Модель, построенная с использованием transfer learning, может быть адаптирована к различным типам лиц и различным условиям освещения.

Создание модели для определения пола и возраста по фотографии лица с использованием глубокого обучения и transfer learning представляет собой эффективный подход к решению задачи компьютерного зрения, который может быть доработан и оптимизирован для конкретных потребностей и требований задачи.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я