1. Книги
  2. Программирование
  3. Джейд Картер

120 практических задач

Джейд Картер (2024)
Обложка книги

В книге представлены 120 задачч из различных областей, включая анализ данных, прогнозирование, классификацию, распознавание образов и другие. В каждой задаче рассматривается использование глубокого обучения и нейронных сетей для решения, включая выбор архитектуры модели, подготовку данных, обучение и оценку результатов. Примеры кода на Python помогают читателям легко освоить материал и применить его на практике.Книга предназначена для специалистов в области данных, исследователей, студентов и всех, кто интересуется применением современных методов глубокого обучения для решения разнообразных задач в науке, технологиях и бизнесе.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

8. Построение сложной GAN для генерации реалистичных изображений

Задача: Генерация изображений лиц

Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение и компиляция GAN.

6. Обучение GAN.

7. Генерация изображений.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import os

import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

import os

# Шаг 2: Подготовка данных

# Загрузка набора данных CelebA

# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'

# Скачивание и подготовка данных не входит в код

DATA_DIR = 'img_align_celeba/img_align_celeba'

IMG_HEIGHT = 64

IMG_WIDTH = 64

BATCH_SIZE = 128

BUFFER_SIZE = 60000

def load_image(image_path):

image = tf.io.read_file(image_path)

image = tf.image.decode_jpeg(image, channels=3)

image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])

image = (image — 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]

return image

def load_dataset(data_dir):

image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]

image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)

image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)

image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)

return image_dataset

train_dataset = load_dataset(DATA_DIR)

# Шаг 3: Построение генератора

def build_generator():

model = models.Sequential()

model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Reshape((8, 8, 256)))

assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

assert model.output_shape == (None, 16, 16, 128)

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

assert model.output_shape == (None, 32, 32, 64)

model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 64, 64, 3)

return model

# Шаг 4: Построение дискриминатора

def build_discriminator():

model = models.Sequential()

model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Flatten())

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Построение генератора и дискриминатора

generator = build_generator()

discriminator = build_discriminator()

# Определение функции потерь и оптимизаторов

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

total_loss = real_loss + fake_loss

return total_loss

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# Шаг 5: Построение и компиляция GAN

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, 100])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):

for epoch in range(epochs):

for image_batch in dataset:

train_step(image_batch)

print(f'Эпоха {epoch + 1} завершена')

# Генерация изображений в конце каждой эпохи

if (epoch + 1) % 10 == 0:

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, epoch + 1, noise)

# Шаг 6: Обучение GAN

EPOCHS = 100

train(train_dataset, EPOCHS)

# Шаг 7: Генерация изображений

def generate_and_save_images(model, epoch, test_input):

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):

plt.subplot(4, 4, i+1)

plt.imshow((predictions[i] * 127.5 + 127.5).numpy().astype(np.uint8))

plt.axis('off')

plt.savefig(f'image_at_epoch_{epoch:04d}.png')

plt.show()

# Генерация изображений после обучения

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, EPOCHS, noise)

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.

2. Подготовка данных: Загружаются и подготавливаются данные CelebA. Изображения нормализуются в диапазоне [-1, 1].

3. Построение генератора: Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 64x64 пикселей.

4. Построение дискриминатора: Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.

5. Построение и компиляция GAN: Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.

6. Обучение GAN: GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений: После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «120 практических задач» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я