1. книги
  2. Техническая литература
  3. Максим Юрьевич Старшин

Безопасное развитие атомной энергетики в меняющихся климатических условиях

Максим Юрьевич Старшин
Обложка книги

Монография посвящена вопросам адаптации атомной энергетики к климатическим изменениям. Рассматриваются причины изменения климата, его прогнозируемые последствия для энергетики и решения для минимизации рисков. Оценены экономические аспекты климатических угроз и возможности международного сотрудничества для обеспечения устойчивости атомных электростанций.Рецензент: кандидат экономических наук, доцент кафедры экологической и промышленной безопасности РТУ МИРЭА — Эпштейн Александр Дмитриевич.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Безопасное развитие атомной энергетики в меняющихся климатических условиях» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Климатические изменения и их воздействие на энергетическую инфраструктуру

Природные и антропогенные причины изменения климата

Изменение климата является сложным и многоаспектным процессом, на который влияют как природные факторы, так и антропогенные (человеческие) действия. Эти два набора причин взаимодействуют между собой, приводя к различным климатическим изменениям, включая повышение средней глобальной температуры, увеличение частоты экстремальных погодных явлений и изменения в природных экосистемах. Рассмотрим подробнее каждую из этих категорий.

1. Природные причины изменения климата

Природные факторы играют важную роль в изменении климата на протяжении всей истории Земли. Они влияют на глобальные и региональные климатические условия, вызывая периодические изменения температур и погодных условий. Некоторые из этих факторов включают:

1.1. Солнечная активность

Солнце является основным источником энергии для Земли, и изменения в его активности могут влиять на климат нашей планеты. Солнечная активность варьируется в зависимости от 11-летнего цикла солнечных пятен, что приводит к колебаниям количества солнечной радиации, достигающей Земли. Более высокая солнечная активность может приводить к временному потеплению, тогда как периоды низкой солнечной активности, такие как минимум Маундера (1645—1715 гг.), совпадают с холодными климатическими условиями, известными как «Малый ледниковый период» в Европе.

Однако современные научные данные показывают, что текущие изменения климата не могут быть объяснены исключительно изменениями в солнечной активности. За последние десятилетия изменения солнечного излучения были минимальны, что указывает на преобладание антропогенных факторов в современном изменении климата.

1.2. Вулканическая активность

Вулканические извержения могут оказывать краткосрочное, но значительное воздействие на климат. При извержениях в атмосферу выбрасываются огромные количества пепла, сернистых соединений и других частиц, которые могут блокировать солнечный свет и приводить к временным похолоданиям. Например, извержение вулкана Тамбора в 1815 году привело к глобальному охлаждению, известному как «год без лета» в 1816 году, когда средняя температура Земли снизилась из-за вулканических выбросов.

Эти частицы могут находиться в стратосфере в течение нескольких лет, временно снижая глобальные температуры, однако в долгосрочной перспективе вулканы не оказывают такого значительного влияния на изменение климата, как антропогенные факторы.

1.3. Циркуляция океанов и атмосферные явления

Океаны играют важную роль в регулировании климата, поглощая и распределяя тепло. Изменения в океанических течениях могут вызывать долгосрочные климатические изменения. Например, климатические феномены Эль-Ниньо и Ла-Нинья оказывают влияние на глобальные температуры и погодные условия. Эль-Ниньо связан с потеплением поверхностных вод Тихого океана, что может привести к повышению глобальных температур, тогда как Ла-Нинья вызывает охлаждение.

Кроме того, циркуляция атмосферы, включающая струйные течения, циклоны и антициклоны, также влияет на региональные погодные условия и климат. Изменения в этих процессах могут вызывать периоды засухи, наводнений или других экстремальных погодных явлений.

1.4. Орбитальные изменения (циклы Миланковича)

Изменения в орбитальных параметрах Земли, такие как эксцентриситет (форма орбиты), наклон оси и прецессия, происходящие с периодичностью в десятки и сотни тысяч лет, могут влиять на климат нашей планеты. Эти циклы, известные как циклы Миланковича, объясняют чередование ледниковых и межледниковых периодов на протяжении последних нескольких миллионов лет. Орбитальные изменения изменяют количество солнечного света, достигающего разных широт, что вызывает долгосрочные изменения климата.

2. Антропогенные причины изменения климата

С середины XX века воздействие антропогенных факторов стало основным двигателем изменений климата. Деятельность человека приводит к выбросам парниковых газов и разрушению природных экосистем, что усиливает парниковый эффект и вызывает глобальное потепление. Основные антропогенные причины включают:

2.1. Сжигание ископаемого топлива

Наиболее значимым источником антропогенных выбросов парниковых газов является сжигание ископаемого топлива — угля, нефти и природного газа. Эти виды топлива используются для производства электроэнергии, промышленности, транспорта и отопления. При сжигании этих материалов выделяется углекислый газ (CO₂), который является основным парниковым газом, улавливающим тепло в атмосфере. С 1750 года концентрация CO₂ в атмосфере увеличилась более чем на 45%, что привело к значительному усилению парникового эффекта.

В частности, энергетический сектор является крупнейшим источником выбросов CO₂, на который приходится около 40% всех выбросов парниковых газов. Вторая по величине категория — это транспорт, который генерирует около 25% мировых выбросов, главным образом за счёт автомобилей, грузовиков и авиации.

2.2. Вырубка лесов

Леса играют важную роль в поглощении углекислого газа, но их разрушение и вырубка ведут к обратному эффекту — высвобождению углерода, запасённого в растительности и почве. Леса занимают около 30% поверхности Земли, но в последние десятилетия скорость их исчезновения значительно возросла из-за сельского хозяйства, застройки и добычи полезных ископаемых.

Вырубка лесов приводит к сокращению способности планеты поглощать углекислый газ, что усиливает парниковый эффект. Ежегодно в атмосферу выбрасывается около 8—10% глобальных выбросов парниковых газов за счёт уничтожения лесов, особенно в тропических регионах, таких как Амазония, Юго-Восточная Азия и Центральная Африка.

2.3. Сельское хозяйство

Сельское хозяйство является важным источником антропогенных выбросов парниковых газов. Наиболее значимыми парниковыми газами, выделяемыми в результате сельскохозяйственной деятельности, являются метан (CH₄) и закись азота (N₂O).

— Метан выделяется в процессе выращивания риса и содержания скота. Коровы и другие жвачные животные производят метан при переваривании пищи. Кроме того, метан выделяется из анаэробных болотистых почв в процессе выращивания риса. Метан обладает парниковым эффектом, примерно в 25 раз более сильным, чем CO₂, и его вклад в изменение климата существенен.

— Закись азота выделяется при использовании азотных удобрений, которые увеличивают урожайность сельскохозяйственных культур, но также способствуют увеличению выбросов этого парникового газа. Закись азота обладает парниковым эффектом, примерно в 300 раз более сильным, чем углекислый газ.

2.4. Промышленность и производство

Промышленные процессы, такие как производство цемента, стали, химической продукции и других товаров, также вносят значительный вклад в выбросы парниковых газов. Производство цемента, например, приводит к значительным выбросам CO₂, так как при производстве клинкера — основного компонента цемента — выделяется углекислый газ в больших количествах.

Некоторые промышленные химические вещества, такие как хлорфторуглероды (CFCs), гидрофторуглероды (HFCs) и перфторуглероды (PFCs), также обладают мощным парниковым эффектом. Хотя многие из этих веществ были запрещены в рамках Монреальского протокола из-за их разрушительного воздействия на озоновый слой, их долгий жизненный цикл означает, что они остаются в атмосфере и продолжают оказывать влияние на климат.

2.5. Городская застройка и транспорт

Рост городов и расширение инфраструктуры также вносят вклад в изменение климата. Города генерируют значительное количество тепла за счёт плотной застройки, большого количества транспортных средств и потребления энергии, что создаёт эффект «городских тепловых островов». Эти факторы способствуют локальному повышению температуры в городах, что в конечном итоге влияет на региональные и глобальные климатические изменения.

Кроме того, транспортная система, особенно в крупных городах, является значительным источником выбросов CO₂ и других загрязняющих веществ, таких как оксиды азота и взвешенные частицы. Увеличение количества автомобилей, особенно на ископаемом топливе, ускоряет выбросы и усугубляет изменение климата.

Изменение климата является результатом комплексного взаимодействия природных и антропогенных факторов. Если природные причины влияли на климат Земли на протяжении миллионов лет, то в последние десятилетия основным фактором климатических изменений стали действия человека. Антропогенные выбросы парниковых газов, вызванные сжиганием ископаемого топлива, вырубкой лесов и развитием промышленности, способствуют усилению парникового эффекта и ускоряют глобальное потепление, которое, в свою очередь, ведёт к серьёзным последствиям для экосистем и экономики.

Прогнозируемые климатические сценарии и их последствия для энергетики

Климатические изменения уже оказывают значительное влияние на энергетический сектор и будут продолжать это делать в ближайшие десятилетия. Международные организации, такие как Межправительственная группа экспертов по изменению климата (IPCC), прогнозируют различные сценарии изменения климата, основанные на уровне выбросов парниковых газов, глобальных температурах и изменениях погодных условий. Эти сценарии варьируются от умеренного изменения климата при строгих мерах по снижению выбросов до критических, если выбросы продолжат расти.

Каждый из этих сценариев несёт определённые риски и вызовы для энергетики, особенно для традиционных источников энергии, таких как уголь и нефть, а также для возобновляемых и ядерных источников, на которых сейчас делаются акценты в контексте устойчивого развития.

1. Сценарии глобального потепления

Прогнозируемые сценарии изменения климата включают различные уровни глобального потепления, которые приводят к изменению природных условий и оказывают как прямое, так и косвенное воздействие на энергетический сектор.

1.1. Сценарий RCP2.6 (стабилизация климата)

Этот сценарий предполагает строгие меры по сокращению выбросов парниковых газов, которые позволят стабилизировать глобальную температуру на уровне около +1.5° C к концу XXI века по сравнению с доиндустриальной эпохой. В рамках этого сценария:

— Последствия для энергетики: Переход на низкоуглеродные и безуглеродные источники энергии станет ключевым требованием. В этом сценарии ожидается значительное снижение доли ископаемых источников энергии, что приведёт к ускоренной декарбонизации энергетического сектора. Ядерная энергия будет играть важную роль в поддержании стабильности энергосистем в условиях перехода на возобновляемые источники, особенно из-за её низких выбросов СО₂ и высокой производительности.

— Вызовы: Переход потребует значительных инвестиций в инфраструктуру, особенно в модернизацию электросетей, чтобы они могли интегрировать больший объём возобновляемых источников энергии (ВИЭ), таких как солнечная и ветровая энергия. Также возникнут требования по внедрению новых технологий, таких как системы накопления энергии и водородные технологии.

1.2. Сценарий RCP4.5 (умеренное потепление)

При этом сценарии ожидается увеличение глобальной температуры на 2—3° C. Это возможно при частичном сокращении выбросов, но без строгих мер по контролю за эмиссией парниковых газов.

— Последствия для энергетики: Умеренное потепление приведёт к увеличению числа экстремальных погодных явлений, таких как засухи, наводнения, волны тепла и бури. Это создаст серьёзные риски для энергетической инфраструктуры, особенно для энергетики, основанной на ископаемом топливе. В некоторых регионах возрастёт вероятность отключений электричества из-за повреждения электросетей, а также дефицита воды для охлаждения на атомных и тепловых электростанциях.

— Вызовы: В этом сценарии на первый план выйдет адаптация энергетической инфраструктуры к новым климатическим условиям. Необходимы будут инвестиции в укрепление электросетей, повышение их устойчивости к экстремальным погодным условиям, а также в разработку новых систем охлаждения для электростанций, использующих воду. Увеличится потребность в технологии децентрализованной генерации и энергоэффективности для снижения нагрузок на централизованные системы энергоснабжения.

1.3. Сценарий RCP6.0 (умеренно высокое потепление)

Этот сценарий подразумевает менее строгие меры по сокращению выбросов и, как следствие, потепление на 3—4° C к концу века. Это приведёт к серьёзным изменениям в климатических условиях на глобальном уровне.

— Последствия для энергетики: Увеличение частоты и интенсивности экстремальных погодных явлений станет серьёзным вызовом для энергетических систем. Например, продолжительные периоды жары увеличат спрос на электроэнергию для кондиционирования, что приведёт к перегрузкам сетей. Засухи приведут к снижению доступности воды для гидроэнергетики и охлаждения тепловых и атомных электростанций.

— Вызовы: Потребуются радикальные изменения в управлении энергетическими системами, включая внедрение более устойчивых к климатическим воздействиям технологий, таких как системы накопления энергии и управление спросом. Для атомной энергетики могут потребоваться новые технологии охлаждения, не зависящие от водных ресурсов, так как водоёмы будут пересыхать или испытывать перегрев.

1.4. Сценарий RCP8.5 (критическое потепление)

Этот сценарий предполагает неконтролируемое увеличение глобальной температуры на 4° C и выше. Он связан с продолжающимся ростом выбросов парниковых газов, а также с увеличением частоты и интенсивности климатических катастроф.

— Последствия для энергетики: Экстремальные климатические условия будут угрожать энергетической инфраструктуре по всему миру. Участятся ураганы, наводнения, лесные пожары, которые могут повредить электростанции и линии электропередач. Атомная энергетика столкнётся с проблемами, связанными с охлаждением реакторов в условиях высоких температур и нехватки воды. Ветровая и солнечная энергетика также могут столкнуться с трудностями: изменение ветровых паттернов может снизить производительность ветровых станций, а увеличенное количество пыли и тепловые аномалии — снизить эффективность солнечных панелей.

— Вызовы: В этом сценарии выживание энергетической инфраструктуры будет зависеть от способности адаптироваться к быстрым изменениям. Будет возрастать значение резервных источников энергии и гибридных энергетических систем, которые смогут быстро восстанавливаться после разрушений. Ускорение разработки технологий улавливания углерода и создание устойчивых к изменениям электросетей станут необходимыми условиями для стабильного энергоснабжения.

2. Воздействие климатических изменений на различные виды энергетики

2.1. Атомная энергетика

Ядерные электростанции зависят от стабильных источников воды для охлаждения реакторов. Однако климатические изменения, такие как засухи и повышение температуры воды, могут нарушить этот процесс. Снижение доступности воды для охлаждения уже вызывает временные остановки работы некоторых АЭС. В будущем может потребоваться адаптация существующих атомных электростанций, включая внедрение воздушных систем охлаждения и использование других ресурсов, таких как морская вода.

Конец ознакомительного фрагмента.

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Безопасное развитие атомной энергетики в меняющихся климатических условиях» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я