Связанные понятия
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно (BFGS) (англ. Broyden — Fletcher — Goldfarb — Shanno algorithm) — итерационный метод численной оптимизации, предназначенный для нахождения локального максимума/минимума нелинейного функционала без ограничений.
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Квадрати́чная зада́ча о назначе́ниях (КЗН, англ. Quadratic assignment problem, QAP) — одна из фундаментальных задач комбинаторной оптимизации в области оптимизации или исследования операций, принадлежащая категории задач размещения объектов.
Оптимизация — в математике, информатике и исследовании операций задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.
Дробно-линейное программирование (ДЛП) — математическая дисциплина, посвящённая теории и методам решения задач об экстремумах отношений линейных функций на множествах n-мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Обучение с ошибками в кольце (англ. Ring learning with errors, RLWE)— это вычислительная задача, которая была сформулирована как вариант более общей задачи обучения с ошибками (с англ. LWE), с целью использовать преимущество дополнительной алгебраической структуры (т.е. кольца многочленов) из теории решеток, что дало возможность повысить и расширить возможности шифрования тех криптографических приложений, которые ранее основывались на LWE. Задача RLWE стала основой новых криптографических алгоритмов...
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Алгоритм исчисления порядка (index-calculus algorithm) — вероятностный алгоритм вычисления дискретного логарифма в кольце вычетов по модулю простого числа. На сложности нахождения дискретного логарифма основано множество алгоритмов связанных с криптографией. Так как для решения данной задачи с использованием больших чисел требуется большое количество ресурсов, предоставить которые не может ни один современный компьютер. Примером такого алгоритма является ГОСТ Р 34.10-2012.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Обучение с ошибками (англ. Learning with errors) — это концепция машинного обучения, суть которой заключается в том, что в простые вычислительные задачи (например, системы линейных уравнений) намеренно вносится ошибка, делая их решение известными методами неосуществимым за приемлемое время.
В информатике временна́я сложность алгоритма определяет время работы, используемое алгоритмом, как функции от длины строки, представляющей входные данные . Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая исключает коэффициенты и члены меньшего порядка. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, т.е. при стремлении размера входа к бесконечности. Например, если время, которое нужно алгоритму для выполнения...
Подробнее: Временная сложность алгоритма
Обратная задача — тип задач, часто возникающий во многих разделах науки, когда значения параметров модели должны быть получены из наблюдаемых данных.
В криптографии обмен ключами при обучении с ошибками — криптографический алгоритм, позволяющий двум сторонам создавать и обмениваться секретным ключом, который они используют для шифрования сообщений между собой. RLWE-KEX (англ. Ring Learning with Errors Key Exchange) является одним из алгоритмов с открытым ключом, который предназначен для защиты от противника, обладающего квантовым компьютером. Это важно, потому что криптографические системы с открытым ключом, широко используемые сегодня, легко...
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Макроконвейер — распределенная многопроцессорная система, обладающая программной и аппаратной поддержкой организации вычислений по макроконвейерному принципу. Этот принцип был предложен в 1978 году советским математиком В. М. Глушковым. Его суть состоит в том, что при распределении вычислительных заданий между процессорами каждому процессору на очередном шаге вычислений дается такое задание, которое может загрузить его работой на определенное время, без взаимодействия с другими процессорами. Последовательное...
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Постепенная оптимизация — это техника глобальной оптимизации, которая пытается решить трудную задачу оптимизации путём решения сначала сильно упрощённой задачи с последовательным преобразованием этой задачи, пока она не станет эквивалентна исходной трудной оптимизационной задаче.
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
Гиперэвристика (гиперэвристический алгоритм) — эвристический метод поиска, направленный на автоматизацию процесса выбора, комбинирования, обобщения или адаптации нескольких более простых эвристик (или их частей) для эффективного решения вычислительной задачи.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Символьные вычисления — это преобразования и работа с математическими равенствами и формулами как с последовательностью символов. Они отличаются от численных расчётов, которые оперируют приближёнными численными значениями, стоящими за математическими выражениями. Системы символьных вычислений (их так же называют системами компьютерной алгебры) могут быть использованы для символьного интегрирования и дифференцирования, подстановки одних выражений в другие, упрощения формул и т. д.
Ме́тод А́дамса — конечноразностный многошаговый метод численного интегрирования обыкновенных дифференциальных уравнений первого порядка. В отличие от метода Рунге-Кутты использует для вычисления очередного значения искомого решения не одно, а несколько значений, которые уже вычислены в предыдущих точках.
Суперкомпиляция , или метакомпиляция, — специальная техника оптимизации алгоритмов, основанная на знании конкретных входных данных алгоритма. Суперкомпилятор принимает исходный код алгоритма плюс некоторые данные о входных параметрах и возвращает новый исходный код, который исполняет свою задачу на этих данных быстрее или является лучше исходного алгоритма по каким-то другим показателям. Очень часто под суперкомпиляцией неверно понимают глобальную оптимизацию программы, то есть эквивалентные преобразования...
Быстрые алгоритмы — это область вычислительной математики, которая изучает алгоритмы вычисления заданной функции с заданной точностью с использованием как можно меньшего числа битовых операций.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Иные значения см. разделе в Компьютерное моделирование.Теория вычислимости и теория сложности вычислений трактует модель вычисления (англ. model of computation) не только как определение множества допустимых операций, использованных для вычисления, но также и относительных издержек их применения. Охарактеризовать необходимые вычислительные ресурсы — время выполнения, объём памяти, а также ограничения алгоритмов или компьютера — можно только в том случае, если выбрана определённая модель вычислений...
Подробнее: Модель вычислений
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Латентно-семантический анализ (ЛСА) (англ. Latent semantic analysis, LSA) — это метод обработки информации на естественном языке, анализирующий взаимосвязь между библиотекой документов и терминами, в них встречающимися, и выявляющий характерные факторы (тематики), присущие всем документам и терминам.
Винеровская теория нелинейных систем — подход к решению задач анализа и синтеза нелинейных систем с постоянными параметрами, при котором в качестве математической модели нелинейной системы рассматривается функционал, который ставит в соответствие каждой функции (входному сигналу системы за рассматриваемое время) число (мгновенный выходной сигнал системы).
Томогра́фия (др.-греч. τομή — сечение) — получение послойного изображения внутренней структуры объекта.
Полный перебор (или метод «грубой силы», англ. brute force) — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Квантовые методы Монте-Карло — большая семья методов, для исследования сложных квантовых систем. Одна из главных задач — обеспечить надёжное решение (или достаточно точное приближение) квантовой задачи многих тел. Различные варианты этого метода имеют общую особенность: они используют метод Монте-Карло для вычисления многомерных интегралов, возникающих в различных формулировках задачи многих тел. Квантовые методы Монте-Карло позволяют описывать сложные эффекты многих частиц, зашифрованные в волновой...
Линейный классификатор — способ решения задач классификации, когда решение принимается на основании линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности.
Метод внутренней точки — это метод позволяющий решать задачи выпуклой оптимизации с условиями, заданными в виде неравенств, сводя исходную задачу к задаче выпуклой оптимизации.
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Линейно-квадратичное гауссовское управление (англ. Linear quadratic Gaussian control, LQG control) — набор методов и математического аппарата теории управления для синтеза систем управления с отрицательной обратной связью для линейных систем с аддитивным гауссовским шумом. Синтез проводится путём минимизации заданного квадратичного функционала.
Численное решение уравнений и их систем состоит в приближённом определении корней уравнения или системы уравнений и применяется в случаях, когда точный метод решения неизвестен или трудоёмок.
Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Задача Фейнмана (иногда англ. universal quantum simulator — универсальный квантовый симулятор) — приложение квантовых компьютеров для моделирования квантовых систем. К идее использовать квантовые компьютеры для моделирования квантовых физических процессов впервые привлёк внимание Ричард Фейнман, хотя аналогичные идеи в 1981 году высказал Юрий Манин в своей работе «Вычислимое и невычислимое». Фейнман в своей работе в 1982 году обратил внимание на то, что моделирование даже простейших физических систем...