Связанные понятия
Функция Шпрага-Гранди широко используется в теории игр для нахождения выигрышной стратегии в комбинаторных играх, таких как игра Ним. Функция Шпрага-Гранди определяется для игр с двумя игроками, в которых проигрывает игрок, не имеющий возможности сделать очередной ход.
Случайность имеет множество применений в области науки, искусства, статистики, криптографии, игр, азартных игр, и других областях. Например, случайное распределение в рандомизированных контролируемых исследованиях помогает ученым проверять гипотезы, а также случайные и псевдослучайные числа находят применение в видео-играх, таких как видеопокер.
Подробнее: Применения случайности
Парадо́кс Парро́ндо — парадокс в теории игр, который обычно характеризуют как комбинацию проигрышных стратегий, которая выигрывает. Парадокс назван в честь его создателя, Хуана Паррондо, испанского физика. Утверждение парадокса выглядит следующим образом...
Домини́рование в теории игр — ситуация, при которой одна из стратегий некоторого игрока дает больший выигрыш, нежели другая, при любых действиях его оппонентов. Обратное понятие, нетранзитивность, возникает, если некоторая стратегия может давать меньшие выигрыши, чем другая, в зависимости от поведения остальных участников.
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
В теории игр, игра в нормальной или стратегической форме (англ. normal form) состоит из трех элементов: множества игроков, множества чистых стратегий каждого игрока, множества платежных функций каждого игрока. Таким образом, игру в нормальной форме можно представить в виде n-мерной матрицы (таблицы), элементы которой это n-мерные платежные вектора. Эта таблица называется платёжной матрицей (англ. payoff matrix).
Подробнее: Нормальная форма игры
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Некооперативная игра — термин теории игр. Некооперативной игрой называется математическая модель взаимодействия нескольких сторон (игроков), в процессе которого они не могут формировать коалиции и координировать свои действия.
Игрок (англ. player) в теории игр — рациональный индивид, имеющий заинтересованность в исходе игры и возможности воздействовать на него.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Минимакс — правило принятия решений, используемое в теории игр, теории принятия решений, исследовании операций, статистике и философии для минимизации возможных потерь из тех, которые лицу, принимающему решение, нельзя предотвратить при развитии событий по наихудшему для него сценарию.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
Выявленное предпочтение — предпочтение, информация о котором получена в результате наблюдения за поведением экономического агента. Концепция выявленных предпочтений — это один из методов моделирования потребительского поведения в условиях определённости, который был предложен в 1938 году американским экономистом Полом Самуэльсоном. Метод основан на том, что у агентов имеются определённые устойчивые предпочтения, в соответствии с которыми они осуществляют выбор.
Подробнее: Выявленные предпочтения
Эпистемическая теория игр (англ. epistemic game theory), иначе называемая интерактивной эпистемологией (англ. interactive epistemology), формализует допущения о верах и знаниях игроков относительно рациональности, поведения оппонентов, их собственных знаний и вер. Эти допущения лежат в основе различных концепций решения — правил, в соответствии с которыми прогнозируется поведение игроков и, следовательно, исход игры. Допущения часто описаны на интуитивном уровне, и эпистемический анализ необходим...
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Безопасность информационных потоков — набор требований и правил, направленных на определение того, какие информационные потоки в системе являются разрешёнными, а какие нет. Данная модель не является самостоятельной, и используется в дополнение к мандатной или дискреционной модели управления доступа.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Переобучение (переподгонка, пере- в значении «слишком», англ. overfitting) в машинном обучении и статистике — явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Закон необходимого разнообразия (англ. The Law of Requisite Variety) — кибернетический закон, сформулированный Уильямом Россом Эшби и формально доказанный в работе «Введение в кибернетику».
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Демпстера-Шафера теория — математическая теория очевидностей (свидетельств) (), основанная на функции доверия (belief functions) и функции правдоподобия (plausible reasoning), которые используются, чтобы скомбинировать отдельные части информации (свидетельства) для вычисления вероятности события. Теория была развита Артуром П. Демпстером и Гленном Шафером.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Уравнение ренормгруппы (уравнение Каллана — Симанчика) — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).
Битва полов или семейный спор (англ. Battle of the sexes (BoS), альтернативное расшифровка аббревиатуры — англ. Bach or Stravinsky, «Бах или Стравинский») — одна из основополагающих некооперативных моделей в теории игр, которая предполагает участие двух игроков с разными предпочтениями.
Локальный уровень выброса является алгоритмом в выявлении аномалий, который предложили Маркус М. Бройниг, Ганс-Петер Кригель, Реймонд Т. Нг и Ёрг Сандер в 2000 году для нахождения аномальных точек данных путём измерения локального отклонения данной точки данных с учётом её соседей.
Лемма разветвления (англ. Forking lemma) — лемма в области криптографических исследований.
Причинность по Грэнджеру (англ. Granger causality) — понятие, используемое в эконометрике (анализе временных рядов), формализующее понятие причинно-следственной связи между временными рядами. Причинность по Грэнджеру является необходимым, но не достаточным условием причинно-следственной связи.
Структурная индукция — конструктивный метод математического доказательства, обобщающий математическую индукцию (применяемую над натуральным рядом) на произвольные рекурсивно определённые частично упорядоченные совокупности. Структурная рекурсия — реализация структурной индукции в форме определения, процедуры доказательства или программы, обеспечивающая индукционный переход над частично упорядоченной совокупностью.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Машина вероятности – математическая модель вычислительного устройства, в работе которого участвует некоторый случайный процесс. Различные варианты понятия «Машины вероятности» являются обобщениями понятий «автомата детерминированного», «Тьюринга машина», «автомата бесконечного». Рассматривались, например, такие понятия «машины вероятности», как: 1)Машина Тьюринга (или другой детерминированный автомат) с входом, к которому присоединен бернуллиевский датчик, выдающий символ 1 и 0 с вероятностью p и...
Дизайн механизмов (англ. mechanism design) — область исследования в экономической теории и теории игр, которая представляет собой подход создания механизмов и стимулов для достижения желаемых целей, где игроки действуют рационально, а действия экономических субъектов приводят к решению, оптимальному для функции социального выбора. Этот подход впервые был предложен Леонидом Гурвичем в 1960 году.
Обучение на примерах (англ. Learning from Examples) - вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Теорема Эрроу (также известна как «Парадокс Эрроу», англ. Arrow’s paradox) — теорема «о невозможности демократии» как «коллективного выбора», иначе называют «теоремой о неизбежности диктатора». Сформулирована американским экономистом Кеннетом Эрроу в 1951 году.
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...