Связанные понятия
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
Непрерывная функция — функция, которая меняется без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Упоминания в литературе
Нашел более простое по сравнению с признаком Дирихле доказательство сходимости ряда Фурье к рассматриваемой функции. Предложил метод касательных преобразований при сведении дифференциальных уравнений 1-го порядка до функционального. Независимо от С. Ли дал критерий интегрируемости в квадратуре уравнения 1-го порядка Развил исследования С. Ковалевской об условиях однозначности общих
интегралов дифференциальных уравнений. Серию работ посвятил решению задачи о движении двух и трех тел.
Для распределения дополнительного прироста недостаточно взять его часть, соответствующую количеству факторов, т. к. факторы могут действовать в разных направлениях. Поэтому изменение результативного показателя измеряется на бесконечно малых отрезках времени, т. е. производится суммирование приращения результата, определяемого как частные произведения, умноженные на приращения факторов на бесконечно малых промежутках. Операция вычисления определенного
интеграла решается с помощью ПЭВМ и сводится к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы. В связи со сложностью вычисления некоторых определенных интегралов и дополнительные сложностей, связанных с возможным действием факторов в противоположных направлениях, на практике используются специально сформированные рабочие формулы, приводимые в специальной литературе:
Раздел математики, сейчас называемый «математический анализ», в старые годы был известен под названием «дифференциальное и интегральное исчисление». Отнюдь не всем обязательно знать точное определение таких основных понятий этого раздела, как производная и
интеграл . Однако каждому образованному человеку желательно иметь представление о производном числе как о мгновенной скорости (а также как об угловом коэффициенте касательной) и об определённом интеграле как о площади (а также как о величине пройденного пути). Поучительно знать и о знаменитых математических проблемах (разумеется, тех из них, которые имеют общедоступные формулировки) – решённых (таких как проблема Ферма и проблема четырёх красок[2]), ждущих решения (таких, как проблема близнецов[3]) и тех, у которых решения заведомо отсутствуют (из числа задач на геометрическое построение и простейших задач на отыскание алгоритмов). Ясное понимание несуществования чего-то – чисел ли с заданными свойствами, или способов построения, или алгоритмов – создаёт особый дискурс, который можно было бы назвать культурой невозможного. И культура невозможного, и предпринимаемые математикой попытки познания бесконечного значительно расширяют горизонты мышления.
Первый сомножитель p, называемый геометрическим альбедо, есть отношение блеска реального небесного тела при нулевом угле фазы к блеску абсолютно белого диска того же радиуса, что и небесное тело, расположенного перпендикулярно к солнечным лучам на том же расстоянии от Солнца и Земли, что и само небесное тело. Второй сомножитель q, называемый фазовым
интегралом , зависит от формы поверхности.
Напомним, что причинная тотальность «вертикальных» корреляций отражает смысл моноструктуры равнозначных свойств; следовательно, учитывая тождество триады каузальной сопряженности, детерминации, а также гомоморфных уровней и компонент, мы получаем
интеграл ьно-«слитую» причину как моносистему (тип индивидуальности), обладающую собственной детерминацией.
Связанные понятия (продолжение)
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Подробнее: Вычет (комплексный анализ)
Гиперболи́ческие фу́нкции — семейство элементарных функций, выражающихся через экспоненту и тесно связанных с тригонометрическими функциями.
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения...
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Измери́мые функции представляют естественный класс функций, связывающих пространства с выделенными алгебрами множеств, в частности измеримыми пространствами.
Подробнее: Измеримая функция
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.
Скаля́р (от лат. scalaris — ступенчатый) — величина, полностью определяемая в любой координатной системе одним числом или функцией, которое не меняется при изменении пространственной системы координат. В математике под «числами» могут подразумеваться элементы произвольного поля, тогда как в физике имеются в виду действительные или комплексные числа. О функции, принимающей скалярные значения, говорят как о скалярной функции.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических...
Фу́нкция Гри́на — функция, используемая для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Длина кривой (или, что то же, длина дуги кривой) — числовая характеристика протяжённости этой кривой. Исторически вычисление длины кривой называлось спрямлением кривой (от лат. rectificatio, спрямление).
Норма — функционал, заданный на векторном пространстве и обобщающий понятие длины вектора или абсолютного значения числа.
Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой. Векторное произведение коллинеарных векторов (в частности, если хотя бы один из множителей — нулевой вектор) считается равным нулевому вектору.
Спектр оператора — множество чисел, характеризующее линейный оператор. Применяется в линейной алгебре, функциональном анализе и квантовой механике.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Дифференцирование в алгебре — операция, обобщающая свойства различных классических производных и позволяющая ввести дифференциально-геометрические идеи в алгебраическую геометрию. Изначально это понятие было введено для исследования интегрируемости выражений в элементарных функциях алгебраическими методами.
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.
Подробнее: Скобка Пуассона
Конформное отображение — непрерывное отображение, сохраняющее углы между кривыми, а значит и форму бесконечно малых фигур.
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Инвариа́нт — это свойство некоторого класса (множества) математических объектов, остающееся неизменным при преобразованиях определённого типа.
Топологическое векторное пространство , или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Специальные функции — встречающиеся в различных приложениях математики (чаще всего — в различных задачах математической физики) функции, которые не выражаются через элементарные функции. Специальные функции представляются в виде рядов или интегралов.