Связанные понятия
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Непрерывная функция — функция, которая меняется без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как...
Подробнее: Квазианалитическая функция
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.
Подробнее: Функциональная производная
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.
Подробнее: Равенство смешанных производных
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны...
Двойственность , или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.
Подробнее: Кэлеров дифференциал
Антиголоморфные функции (также называемые антианалитическими) — семейство функций, тесно связанных с голоморфными функциями.
Подробнее: Антиголоморфная функция
Особенность , или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.
Подробнее: Монодромия
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Вариация Фреше — одна из числовых характеристик функции нескольких переменных, которую можно рассматривать как многомерный аналог вариации функции одного переменного.
Интеграл Даниеля — одно из обобщений интеграла Римана, альтернативное понятию интеграла Лебега.
О функции, см.: Интерполянт.Интерполя́ция, интерполи́рование (от лат. inter–polis — «разглаженный, подновлённый, обновлённый; преобразованный») — в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений. Термин «интерполяция» впервые употребил Джон Валлис в своём трактате «Арифметика бесконечных» (1656).
Подробнее: Интерполяция
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
В теории категорий,
подфунктор — специальный тип функтора в Set, использующий определение подмножества.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса...
Подробнее: Сглаживающий оператор
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Подробнее: Вычет (комплексный анализ)
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Лине́йная комбина́ция — выражение, построенное на множестве элементов путём умножения каждого элемента на коэффициенты с последующим сложением результатов (например, линейной комбинацией x и y будет выражение вида ax + by, где a и b — коэффициенты).
Бу́лева фу́нкция (или логи́ческая функция, или функция а́лгебры ло́гики) от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество. Элементы булева множества {1, 0} обычно интерпретируют как логические значения «истинно» и «ложно», хотя в общем случае они рассматриваются как формальные символы, не несущие определённого смысла. Неотрицательное целое число n называют арностью или местностью функции, в случае n = 0 булева функция превращается в булеву константу...
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.
Подробнее: Естественное преобразование
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Случайный элемент — обобщение понятия случайной величины. Термин был введён, по-видимому, М.Фреше (1948), отмечавшим, что «развитие теории вероятностей и расширение области её приложений привели к необходимости перейти от схем, где (случайные) исходы опыта могут быть описаны числом или конечным набором чисел, к схемам, где исходы опыта представляют собой, например, векторы, функции, процессы, поля, ряды, преобразования, а также множества или наборы множеств».
Характеристи́ческая фу́нкция случа́йной величины ́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Тополо́гия Зари́сского , или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
Ве́кторное (или лине́йное) простра́нство — математическая структура, которая представляет собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления...
Опера́тор (позднелат. operator — работник, исполнитель, от operor — работаю, действую) — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой (порядком, топологией, алгебраическими операциями). Понятие оператора используется в различных разделах математики для отличия от другого рода отображений (главным образом, числовых функций); точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения...
Ультрапредел — конструкция, позволяющая определить предел для широкого класса математических объектов.