Связанные понятия
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.
Подробнее: Равенство смешанных производных
Характеристи́ческая фу́нкция случа́йной величины ́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
Дробная производная (или производная дробного порядка) является обобщением математического понятия производной. Существует несколько разных способов обобщить это понятие, но все они совпадают с понятием обычной производной в случае натурального порядка. Когда рассматриваются не только дробные, но и отрицательные порядки производной, к такой производной обычно применяется термин дифферинтеграл.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Гладкая функция , или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Универсальная тригонометрическая подстановка , в англоязычной литературе называемая в честь Карла Вейерштрасса подстановкой Вейерштрасса, применяется в интегрировании для нахождения первообразных, определённых и неопределённых интегралов от рациональных функций от тригонометрических функций. Без потери общности можно считать в данном случае такие функции рациональными функциями от синуса и косинуса. Подстановка использует тангенс половинного угла.
Кубический сплайн — гладкая функция, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым кубическим многочленом (полиномом).
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Функция делителей — арифметическая функция, связанная с делителями целого числа. Функция известна также под именем функция дивизоров.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
Аддитивная энергия — численная характеристика подмножества группы, иллюстрирующая структурированность множества относительно групповой операции.
Формальное дифференцирование — операция над элементами кольца многочленов или кольцом формальных степенных рядов, повторяющая форму производных из математического анализа. Алгебраическое преимущество формального дифференцирования состоит в том, что оно не опирается на понятие предела, которое в общем случае невозможно определить для кольца. Многие свойства производной верны для формального дифференцирования, но некоторые, особенно касающиеся утверждений, содержащих числа, не верны. В основном формальное...
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Подробнее: Вычет (комплексный анализ)
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Конечная разность — математический термин, широко применяющийся в методах вычисления при интерполировании.
Подробнее: Конечные разности
Ко́мпле́ксный ана́лиз , тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
В математическом анализе
предельные теоремы Сегё описывают асимптотическое поведение детерминантов больших теплицевых матриц.
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Одночлен (также моном) — простое математическое выражение, прежде всего рассматриваемое и используемое в элементарной алгебре, а именно, произведение, состоящее из числового множителя и одной или нескольких переменных, взятых каждая в неотрицательной целой степени .
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Абсолютная непрерывность — в математическом анализе, свойство функций и мер, состоящее, неформально говоря, в выполнении теоремы Ньютона — Лейбница о связи между интегрированием и дифференцированием.
Величина ́ — математическое понятие, описывающее объекты, для которых может быть определено отношение неравенства и смысл операции сложения, а также выполняется ряд свойств, включая аксиомы Архимеда и непрерывности. Величина является одним из основных понятий математики.
Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как...
Подробнее: Квазианалитическая функция
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны...
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Разме́рность физической величины — выражение, показывающее связь этой величины с основными величинами данной системы физических величин; записывается в виде произведения степеней сомножителей, соответствующих основным величинам, в котором численные коэффициенты опущены.
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
Лемма Гаусса — утверждение про свойства многочленов над факториальными кольцами, которое впервые было доказано для многочленов над кольцом целых чисел. Широко применяется в теории колец и полей, в частности, при доказательстве факториальности кольца многочленов над факториальным кольцом и теоремы Люрота.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Коэффицие́нт (от лат. co(cum) «совместно» + efficients «производящий») — числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Математическая формула (от лат. formula — уменьшительное от forma — образ, вид) — в математике, а также физике и прикладных науках, символическая запись высказывания (которое выражает логическое суждение), либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка.
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
В
интегрировании, разложение дробей позволяет интегрировать рациональные функции. Любая рациональная функция может быть представлена в виде суммы некоторого многочлена и некоторого числа дробных функций. Каждая дробь имеет знаменатель в виде многочлена первой или второй степени, причём многочлен в знаменателе, в свою очередь, также может быть возведён в некоторую положительную целую степень. (В случае комплексной переменной, знаменатели являются многочленами первой степени, и эти многочлены могут...
Существенный супремум — это аналог супремума, более подходящий для нужд функционального анализа. В этой науке обычно не интересуются тем, что происходит на множестве меры нуль, что учитывается в определении.