Связанные понятия
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространстве.
Тензор электромагнитного поля — это антисимметричный дважды ковариантный тензор, являющийся обобщением напряжённости электрического и индукции магнитного поля для произвольных преобразований координат. Он используется для инвариантной формулировки уравнений электродинамики, в частности, с его помощью можно легко обобщить электродинамику на случай наличия гравитационного поля.
Лагранжева механика является переформулировкой классической механики, введённой Лагранжем в 1788 году. В лагранжевой механике траектория объекта получается при помощи отыскания пути, который минимизирует действие — интеграл от функции Лагранжа по времени. Функция Лагранжа для классической механики вводится в виде разности между кинетической энергией и потенциальной энергией.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
Упоминания в литературе
Дополнение 1: Возможно моделирование времени как многопараметрического «
фазового пространства », в котором время имеет 2-3-4-5 измерений. Развивающиеся объекты будут расположены в некоторых кластерах этого «фазового пространства» по близким наборам параметров. Возможно также рассуждать о фазовой траектории внутреннего времени, о «топологии» времени и т. д.
Вековые резонансы возникают при совпадении или почти совпадении средних движений перигелиев и/или узлов орбиты малого тела и орбиты возмущающего тела. Вековые резонансы приводят к сильным возмущениям эксцентриситета и/или наклона орбиты малого тела с очень долгими периодами, которые могут достигать десятков и сотен тысяч лет. Результат влияния вековых резонансов на элементы орбит астероидов можно наблюдать при сопоставлении элементов орбит большого числа тел. Вековые резонансы ограничивают область
фазового пространства , в котором располагаются элементы орбит малых планет, а в ряде случаев рассекают ее на части. Вековые резонансы также причастны к переносу вещества из пояса астероидов в область внутренних планет [Knezevic and Milani, 1994]. В частности, у внутреннего края Главного пояса астероидов в окрестности значений большой полуоси a = 2,1 а.е. доминирует вековой резонанс ν6 (совпадение средних движений перигелиев орбит астероида и Сатурна; к нему имеют отношение также вековые осцилляции эксцентриситета орбиты Юпитера). Его расположение в поясе слабо зависит от эксцентриситета, но сильно зависит от наклона орбит: при наклонах, меньших 10°, он проходит в окрестности 2,1 а.е. При бо́льших значениях наклона область его действия смещается в сторону увеличения больших полуосей (рис. 3.11).
Связанные понятия (продолжение)
Сте́пени свобо́ды — характеристики движения механической системы. Число степеней свободы определяет минимальное количество независимых переменных (обобщённых координат), необходимых для полного описания состояния механической системы. Строгое теоретико-механическое определение: число степеней свободы механической системы есть размерность пространства её состояний с учётом наложенных связей.
Обобщённые координаты — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Фу́нкция Гри́на — функция, используемая для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке.
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
В квантовой механике импульс, как и все другие наблюдаемые физические величины, определяется как оператор, который действует на волновую функцию.
Подробнее: Оператор импульса
Метри́ческий те́нзор , или ме́трика, — это симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических...
Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.
Подробнее: Скобка Пуассона
Спектр оператора — множество чисел, характеризующее линейный оператор. Применяется в линейной алгебре, функциональном анализе и квантовой механике.
При́нцип наиме́ньшего де́йствия Га́мильтона (также просто принцип Гамильтона), точнее при́нцип стациона́рности де́йствия — способ получения уравнений движения физической системы при помощи поиска стационарного (часто — экстремального, обычно, в связи со сложившейся традицией определения знака действия, наименьшего) значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике...
Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.
Лоренц-ковариантность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено. Однако некоторые теории пока не удаётся построить так, чтобы выполнялась лоренц-ковариантность.
Принцип общей ковариантности — принцип, утверждающий, что уравнения, описывающие физические явления в различных системах координат, должны иметь в них одинаковую форму. Такие уравнения называют общековариантными. Примером в ньютоновской механике являются уравнения движения в неинерциальных системах отсчёта, включающие в себя силы инерции.
Принцип суперпозиции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит...
Тензорное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие тензор.
Матрица плотности (оператор плотности, оператор матрица плотности, статистический оператор) — один из способов описания состояния квантовомеханической системы. В отличие от волновой функции, пригодной лишь для описания чистых состояний, оператор плотности в равной мере может задавать как чистые, так и смешанные состояния. Основанный на понятии оператора плотности формализм был предложен независимо Л. Д. Ландау и Дж. фон Нейманом в 1927 году, и Ф. Блохом в 1946 году.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Константа взаимодействия или константа связи — параметр в квантовой теории поля, определяющий силу (интенсивность) взаимодействия частиц или полей. Константа взаимодействия связана с вершинами на диаграмме Фейнмана.
Инвариа́нт в физике — физическая величина или соотношение, значение которого в некотором физическом процессе не изменяется с течением времени. Примеры: энергия, компоненты импульса и момента импульса в замкнутых системах.
Корреляционная функция — функция времени и пространственных координат, которая задает корреляцию в системах со случайными процессами.
Неголономная система — механическая система, на которую, кроме геометрических, накладываются и кинематические связи, которые нельзя свести к геометрическим (их называют неголономными). Математически неголономные связи выражаются неинтегрируемыми уравнениями. Движение неголономной системы описывается с помощью специальных уравнений движения (уравнения Чаплыгина, Аппеля, Маджи) или уравнений движения, получаемых из вариационных принципов.
Скаля́р (от лат. scalaris — ступенчатый) — величина, полностью определяемая в любой координатной системе одним числом или функцией, которое не меняется при изменении пространственной системы координат. В математике под «числами» могут подразумеваться элементы произвольного поля, тогда как в физике имеются в виду действительные или комплексные числа. О функции, принимающей скалярные значения, говорят как о скалярной функции.
В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.
Релятивистская механика — раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.
Быстрота ́ (англ. rapidity, иногда применяются также термины гиперскорость и угол лоренцева поворота) — в релятивистской кинематике монотонно возрастающая функция скорости, которая стремится к бесконечности, когда скорость стремится к скорости света. В отличие от скорости, для которой закон сложения нетривиален, для быстроты характерен простой закон сложения («быстрота аддитивна»). Поэтому в задачах, связанных с релятивистскими движениями (например, кинематика реакций частиц в физике высоких энергий...
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.
В гамильтоновой механике
каноническое преобразование (также контактное преобразование) — это преобразование канонических переменных, не меняющее общий вид уравнений Гамильтона для любого гамильтониана. Канонические преобразования могут быть введены и в квантовом случае как не меняющие вид уравнений Гейзенберга. Они позволяют свести задачу с определённым гамильтонианом к задаче с более простым гамильтонианом как в классическом, так и в квантовом случае. Канонические преобразования образуют группу...
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Механической связью называют ограничения, накладываемые на координаты и скорости механической системы, которые должны выполняться на любом её движении.
Подробнее: Механическая связь
Интервал в теории относительности — аналог расстояния между двумя событиями в пространстве-времени, являющийся обобщением евклидового расстояния между двумя точками. Интервал лоренц-инвариантен, то есть не меняется при переходе от одной инерциальной системы отсчёта к другой, и, даже более, является инвариантом (скаляром) в специальной и общей теории относительности.
Аттра́ктор (англ. attract — привлекать, притягивать) — компактное подмножество фазового пространства динамической системы, все траектории из некоторой окрестности которого стремятся к нему при времени, стремящемся к бесконечности. Аттрактором может являться притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением о воздух), периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), или некоторая ограниченная область с неустойчивыми...
Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого).
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Квазиклассическое приближение , также известное как метод ВКБ (Вентцеля — Крамерса — Бриллюэна) — самый известный пример квазиклассического вычисления в квантовой механике, в котором волновая функция представлена как показательная функция, квазиклассически расширенная, а затем или амплитуда, или фаза медленно изменяются. Этот метод назван в честь физиков Г. Вентцеля, Х.А. Крамерса и Л. Бриллюэна, которые развили этот метод в 1926 году независимо друг от друга. В 1923 математик Гарольд Джеффри развил...
Неинерциа́льная систе́ма отсчёта — система отсчёта, движущаяся с ускорением или поворачивающаяся относительно инерциальной. Второй закон Ньютона также не выполняется в неинерциальных системах отсчёта. Для того чтобы уравнение движения материальной точки в неинерциальной системе отсчёта по форме совпадало с уравнением второго закона Ньютона, дополнительно к «обычным» силам, действующим в инерциальных системах, вводят силы инерции.
Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.
Подробнее: Уравнение непрерывности