1. Книги
  2. Базы данных
  3. Артем Демиденко

Data Science с нуля: Полное руководство для начинающих

Артем Демиденко (2025)
Обложка книги

Откройте дверь в мир Data Science с книгой «Data Science с нуля: Полное руководство для начинающих». Эта книга — ваш надежный проводник, который поможет вам понять и освоить основы одной из самых востребованных профессий современности. Независимо от вашего предыдущего опыта, вы сможете научиться всему: от базовых принципов статистики и программирования на Python до создания сложных моделей машинного обучения. Эта книга не только объясняет концепции, но и позволяет применить их на практике. Вы узнаете, как собирать и анализировать данные, визуализировать их с помощью Matplotlib и Seaborn, а также решать реальные задачи и разрабатывать проекты. Вдохновитесь примерами из жизни и научитесь работать в команде, разбирать этические вопросы и защищать конфиденциальную информацию. Книга также раскрывает путь к карьерному росту, давая советы по созданию успешных проектов. Подготовьтесь к захватывающему путешествию и сделайте первый шаг к преобразованию данных в знания. Обложка: Midjourney

Оглавление

Купить книгу

Приведённый ознакомительный фрагмент книги «Data Science с нуля: Полное руководство для начинающих» предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Основы статистики и вероятности

Статистика и вероятность — это два краеугольных камня, на которых базируется наука о данных. Эти дисциплины не только предоставляют средства для анализа собранных данных, но и формируют основу для обоснования выводов и принятия решений. Без понимания основ статистики и вероятности работа с данными может показаться хаотичной, а результаты анализа — ненадежными. В этой главе мы подробно рассмотрим ключевые понятия и методы, лежащие в основе статистики и вероятности, а также их применение в науке о данных.

Первым шагом в нашем изучении станет ознакомление с основными статистическими терминами и концепциями. Статистика делится на две основные категории: описательная и инференциальная. Описательная статистика фокусируется на сборе, организации и представлении данных. Она включает в себя такие меры, как среднее, медиана, мода и стандартное отклонение. Эти показатели помогают кратко охарактеризовать набор данных, предоставляя визуальные и числовые представления, которые значительно упрощают процесс анализа.

Рассмотрим на примере. Представим, что мы собрали данные о расходах на отдых, охватывающие 100 человек. Рассчитав среднее значение, мы можем быстро получить представление о типичном уровне расходов. Однако важно помнить, что это лишь обобщение. Для глубокого понимания ситуации стоит изучить и такие показатели, как медиана — значение, делящее набор данных пополам, и мода — наиболее часто встречающееся значение. Эти дополнительные характеристики позволяют глубже анализировать данные и избегать искажений, которые могут возникнуть из-за присутствия аномальных значений.

Следующим важным аспектом является инференциальная статистика, которая обращается к выборкам данных и использует их для создания выводов о всей популяции. В науке о данных она играет ключевую роль, поскольку часто нам недоступна полная информация о целой группе, и лишь ее часть используется для анализа. Инференциальная статистика включает методы, такие как доверительные интервалы и тесты гипотез. Эти подходы помогают оценивать степень уверенности в полученных результатах и делать обоснованные прогнозы.

Для иллюстрации работы инференциальной статистики рассмотрим задачу, связанную с выборкой данных о покупках в интернет-магазине. Если мы провели опрос среди 400 клиентов из общего числа в 4000, мы можем использовать расчет доверительного интервала, чтобы оценить, какова вероятность того, что средняя сумма покупок всех клиентов находится в определенных пределах. Это позволяет нам с высокой уверенностью делать выводы о всей популяции на основе анализа выборки.

Невозможно говорить о статистике, не упомянув о вероятности. Эта концепция формирует теоретическую основу, на которой базируются многие статистические методы. Вероятность изучает случайные события и описывает возможность их возникновения. Основные правила вероятности, такие как правило сложения и правило произведения, являются важными инструментами для анализа.

Возьмем, к примеру, ситуацию с бросанием двух игральных кубиков. Какова вероятность получения суммы очков равной семи? Чтобы решить эту задачу, сначала определим все возможные исходы — их всего 36. Затем проанализируем, какие комбинации дают в итоге нужное значение: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). Получается, что их шесть. Вероятность в данном случае можно рассчитать по формуле: P(сумма 7) = количество благоприятных исходов / общее количество исходов = 6/36 = 1/6. Это простое, но наглядное объяснение принципов вероятности показывает, как мы можем анализировать случайные события.

Понимание вероятности также приводит к осознанию важности статистических распределений, таких как нормальное, биномиальное и пуассоновское. Нормальное распределение, обладающее колоколообразной формой, является наиболее распространенным и применяется в различных областях, от социологических исследований до финансового анализа. Биномиальное распределение используется для событий с двумя возможными исходами — успешным и неуспешным, в то время как пуассоновское распределение помогает оценить вероятность редких событий, таких как аварии или поломки устройств.

Наука о данных предоставляет множество инструментов и методов, основанных на этих статистических концепциях. Одним из них является функция `scipy.stats` из библиотеки SciPy на Python, позволяющая проводить анализ распределений. Например, чтобы сгенерировать случайные числа, следующие нормальному распределению, можно использовать следующий код:

ython

import numpy as np

import matplotlib.pyplot as plt

# Генерация 1000 случайных чисел из нормального распределения

data = np.random.normal(loc=0, scale=1, size=1000)

# Визуализация данных

plt.hist(data, bins=30, density=True, alpha=0.6, color='g')

plt.title('Гистограмма нормального распределения')

plt.show()

Этот простой пример иллюстрирует, как в реальных условиях применение статистики и вероятности можно преобразовать в создание визуализации, что существенно помогает в интерпретации данных.

В заключение, понимание основ статистики и вероятности — это не просто набор учебных знаний, а важный инструмент для анализа данных. Они позволяют не только делать обоснованные выводы на основе имеющихся данных, но и предсказывать будущие события, основываясь на статистических моделях. Эти навыки являются необходимыми для любого специалиста в области науки о данных и будут служить надежной основой для дальнейшего углубления в более сложные аспекты этой дисциплины.

Вам также может быть интересно

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я