Связанные понятия
Эффекти́вная оце́нка в математической статистике — несмещенная статистическая оценка, дисперсия которой совпадает с нижней гранью в неравенстве Крамера-Рао.
Информационное неравенство (математическая статистика) — неравенство для несмещённой оценки с локально минимальной дисперсией, задающее нижнюю границу для величины дисперсии этой оценки. Играет важную роль в теории асимптотически эффективных оценок.
В статистике метод оценки с помощью апостериорного максимума (MAP) тесно связан с методом максимального правдоподобия (ML), но дополнительно при оптимизации использует априорное распределение величины, которую оценивает.
Подробнее: Оценка апостериорного максимума
Статистические оценки — это статистики, которые используются для оценивания неизвестных параметров распределений случайной величины.
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
'
Обобщённое нормальное (обобщённое гауссовское) распределение' есть одно из двух параметрических семейств абсолютно непрерывных вероятностных распределений на действительной прямой. Два подхода к определению данного семейства распределений обозначаются далее как «подход 1» и «подход 2». Однако данные наименования не являются общепринятыми.
Логарифмическое распределение в теории вероятностей — класс дискретных распределений. Логарифмическое распределение используется в различных приложениях, включая математическую генетику и физику.
Коэффицие́нт сдви́га — это параметр вероятностного распределения, имеющий специальный вид. Физически конкретное значение данного параметра может быть связано с выбором точки отсчёта шкалы измерения.
Выборочная дисперсия в математической статистике — это оценка теоретической дисперсии распределения, рассчитанная на основе данных выборки. Виды выборочных дисперсий...
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Ме́тод обра́тного преобразова́ния (Преобразование Н. В. Смирнова) — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Коэффицие́нт масшта́ба — это параметр вероятностного распределения. Физически конкретное значение данного параметра может быть связано с выбором шкалы измерения.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Статистика — измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения элементов выборки.
В математической статистике неравенством Краме́ра — Ра́о (в честь Гаральда Крамера и К. Р. Рао) называется неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая её через информацию Фишера. Известно его обобщение в квантовой теории оценивания (квантовое неравенство Крамера — Рао).
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Интервальная оце́нка — это пара чисел в математической статистике, оцениваемых на основе наблюдений, между которыми предположительно находится оцениваемый параметр.
Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
В математической статистике
критерий знаков используется при проверке нулевой гипотезы о равенстве медианы некоторому заданному значению (для одной выборки) или о равенстве нулю медианы разности (для двух связанных выборок). Это непараметрический критерий, то есть он не использует никаких данных о характере распределения, и может применяться в широком спектре ситуаций, однако при этом он может иметь меньшую мощность, чем более специализированные критерии.
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
В статистической термодинамике энтропия Цаллиса — обобщение стандартной энтропии Больцмана—Гиббса, предложенное Константино Цаллисом (Constantino Tsallis) в 1988 г. для случая неэкстенсивных (неаддитивных) систем. Его гипотеза базируется на предположении, что сильное взаимодействие в термодинамически аномальной системе приводит к новым степеням свободы, к совершенно иной статистической физике небольцмановского типа.
Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Подробнее: Центральная предельная теорема
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу , характеризующееся тем, что плотность вероятности на этом интервале постоянна.
В статистике, дельта-методом называется результат, описывающий вероятностное распределение функции от асимптотически нормальной статистической оценки при известной асимптотической дисперсии этой оценки.
Подробнее: Дельта-метод
Усечённая регрессия (англ. Truncated regression) или регрессия с урезанной выборкой — модель регрессии в условиях, когда выборка осуществляется только из тех наблюдений, которые, которые удовлетворяют априорным ограничениям, которые обычно формулируются как ограничение снизу и (или) сверху зависимой переменной. Урезание выборки приводит к смещенности МНК -оценок, поэтому оцениваются такие модели с помощью метода максимального правдоподобия.
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания...
Функция предельного правдоподобия (англ. Marginal Likelihood Function) или интегрированное правдоподобие (англ. integrated likelihood) — это функция правдоподобия, в которой некоторые переменные параметры исключены. В контексте байесовской статистики, функция может называться обоснованностью (англ. evidence) или обоснованностью модели (англ. model evidence).
Подробнее: Предельное правдоподобие
Закон повторного логарифма — предельный закон теории вероятностей. Теорема определяет порядок роста делителя последовательности сумм случайных величин, при котором эта последовательность не сходится к нулю, но остается почти всюду в конечных пределах.
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Неравенство Берри — Эссеена — неравенство, позволяющее оценить скорость сходимости суммы независимых случайных величин к случайной величине с нормальным распределением. Сам факт подобной сходимости носит в теории вероятностей название центральной предельной теоремы. Это неравенство было независимо выведено Эндрю Берри в 1941 и Карлом-Густавом Эссееном в 1942 годах.
Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.
Вариационная статистика — исчисление числовых и функциональных характеристик эмпирических распределений. Если в какой-либо группе объектов показатель изучаемого признака изменяется (варьирует) от объекта к объекту, то каждому значению такого показателя х1 …, хn (n — общее количество объектов) ставят в соответствие одну и ту же вероятность, равную 1/n. Такое формально введенное «распределение вероятностей», называется эмпирическим, можно истолковать как распределение вероятностей некоторой искусственно...
То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.
Подробнее: Дискретное равномерное распределение
Коэффицие́нт (от лат. co(cum) «совместно» + efficients «производящий») — числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
В теории вероятностей и статистике, о наборе случайных величин говорят, что они являются независимыми (и) одинаково распределёнными, если каждая из них имеет такое же распределение, что и другие, и все величины являются независимыми в совокупности. Фраза «независимые одинаково распределённые» часто сокращается аббревиатурой i.i.d. (от англ. independent and identically-distributed), иногда — «н.о.р».
Подробнее: Независимые одинаково распределённые случайные величины
Теория оценивания — раздел математической статистики, решающий задачи оценивания непосредственно не наблюдаемых параметров сигналов или объектов наблюдения на основе наблюдаемых данных. Для решения задач оценивания применяется параметрический и непараметрический подход. Параметрический подход используется, когда известна математическая модель...