Связанные понятия
Секвенирование биополимеров (белков и нуклеиновых кислот — ДНК и РНК) — определение их аминокислотной или нуклеотидной последовательности (от лат. sequentum — последовательность). В результате секвенирования получают формальное описание первичной структуры линейной макромолекулы в виде последовательности мономеров в текстовом виде. Размеры секвенируемых участков ДНК обычно не превышают 100 пар нуклеотидов (next-generation sequencing) и 1000 пар нуклеотидов при секвенировании по Сенгеру. В результате...
Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.
Эукарио́ты (устар. эвкарио́ты; лат. Eukaryota от др.-греч. εὖ- ‘хорошо’ или ’полностью’ + κάρυον ‘ядро’), или я́дерные, — домен (надцарство) живых организмов, клетки которых содержат ядро. Все организмы, кроме прокариот (бактерий и архей), являются ядерными. Вирусы и вироиды также не являются ни прокариотами, ни эукариотами; более того, сам вопрос, считать ли их живыми организмами, является дискуссионным.
Спаренные основания — пара двух азотистых оснований нуклеотидов на комплементарных цепочках нуклеиновых кислот (противоположных ДНК или одинаковых РНК), соединённая с помощью водородных связей.
Горизонтальный перенос генов (ГПГ) — процесс, в котором организм передаёт генетический материал организму-непотомку. В отличие от горизонтального, о вертикальном переносе генов говорят, что при нем организм получает генетический материал от своего предка. В области интересов генетики основное место занимает вертикальный перенос генов. Однако в настоящее время горизонтальному переносу уделяется всё больше внимания.
Упоминания в литературе
Вариабельность размеров
генома и числа генов дополняется разнообразием в других измерениях – например, в физической организации и композиции нуклеотидов. При рассмотрении как вирусной, так и клеточной формы жизни геномы предстают во всевозможных формах нуклеиновых кислот (подробнее см. в гл. 10). Все геномы клеточных организмов состоят из двухцепочечных ДНК, однако количество геномных сегментов (хромосом) и их размеры, форма (кольцевая или линейная), а также плоидность (число наборов) широко разнятся. Азбучная истина гласит, что прокариоты имеют гаплоидные, простые кольцевые хромосомы, в то время как у геномов эукариот, сильно различающихся по плоидности, гены распределены между множеством линейных хромосом. И хотя такие геномные формы, по-видимому, действительно доминируют, на самом деле разнообразие геномов выходит далеко за рамки такого простого дихотомического разделения. В частности, у многих прокариот имеется несколько хромосом, в отдельных случаях – линейных. Более того, вопреки распространенному заблуждению, у прокариот большинство клеток не гаплоидные, то есть они содержат несколько копий генома.
вируса располагаются две однонитевые молекулы вирусной РНК, связанные с двумя низкомолекулярными белками (р6 и р7). Генетический аппарат BB4-1 – его РНК – имеет длину чуть меньше 10 тыс. нуклеотидов и содержит всего девять
генов (рис. 7а). Для сравнения: у человека в геноме присутствует свыше 35 тыс. генов! Строение генетического аппарата BB4-2 слегка отличается от BB4-1 (рис. 7б) и больше напоминает устройство генома BИO (рис. 7в). Примечательная особенность генов всех этих вирусов состоит в том, что они перекрываются друг с другом, т. е. одни и те же вирусные нуклеотидные последовательности РНК могут участвовать в кодировании разных белков. Достигается это за счет использования разных точек начала считывания информации с нуклеотидной последовательности ДНК и благодаря разнообразной комбинаторике отдельных фрагментов из разных участков генома. Ряд генов «разорван», т. е. белок кодируется не одной непрерывной последовательностью нук-леотидов, а двумя участками вирусной РНК, порой далеко отстоящими друг от друга. Таким образом, небольшой по размерам геном вирусов за счет использования всевозможных «хитростей» кодирует довольно большое число разнообразных белков. Для сравнения: средний размер гена, кодирующего белок у человека, составляет около 27 тыс. пар нуклеотидов (п.н.), т. е. почти в три раза превышает размер всего генома BИЧ.
Итак, митохондрии развились в ходе эволюции из бывших бактерий. От свободноживущих предков каждой митохондрии досталось в наследство несколько кольцевых молекул ДНК с собственными
генами . Эти гены наследуются независимо от генов, содержащихся в ядре клетки-хозяина. В итоге у всех клеток, имеющих ядро, в том числе человеческих, имеется два отдельных набора генов: ядерный геном и митохондриальный геном. Большинство генов в каждом из этих наборов представляют собой закодированные инструкции для сборки того или иного белка. Однако за многие сотни миллионов лет, прошедшие с тех пор, как предки митохондрий превратились в постоянных обитателей клеток с ядром, митохондриальные геномы постепенно уменьшались в размерах. Например, у млекопитающих каждая хромосома сохранила всего 13 из исходной полусотни генов, кодирующих белки. Все эти гены кодируют белки-ферменты, связанные с энергетическим обменом, чем и определяется роль митохондрий как энергетических станций клетки.
ДНК, дезоксирибонуклеиновая кислота, сохраняет и реализует генетическую программу развития и функционирования организма человека. Находится в ядре клетки в составе 46 хромосом, одна из которых, самая маленькая по размеру – мужская половая хромосома, или Y-хромосома. В ней примерно 58 миллионов нуклеотидов, повторяющихся структурных единиц ДНК-аденина, гуанина, тимина и цитозина. Все 46 хромосом в совокупности состоят из трёх миллиардов нуклеотидов, и в их составе примерно 30 тысяч
генов , в среднем по 652 гена на хромосому. В Y-хромосоме всего 27 генов, остальная часть – некодирующая, «никчёмная», как её часто называют, или, скорее, называли еще недавно. В ней находится много повторов нуклеотидных цепочек, часть которых генетики выбрали в качестве гаплотипов для ДНК-генеалогии. Копирование, или репликацию ДНК выполняет ДНК-зависимая ДНК-полимераза (в составе большого комплекса, реплисомы), которая иногда допускает ошибки, называемые мутациями.
Размер
генома , определяемый количеством ДНК (измеряется числом пар, образующих ДНК нуклеотидов, или в единицах массы), изменялся в ходе эволюции и различен у разных групп организмов. Геном бактерий состоит в среднем из 106 пар нуклеотидов, грибов – из 107 пар, геном большинства животных и многих растений – из 109 нуклеотидных пар. У значительной части семенных растений, а также у саламандр и некоторых древних рыб он достигает размера в 1010 пар нуклеотидов. Геном человека включает примерно 3 млрд. (3·109) пар нуклеотидов. Хотя у более продвинутых групп геном обычно больше, чем у их эволюционных предшественников, прямого и однозначного соответствия между сложностью организма и размером генома нет.
Связанные понятия (продолжение)
Нуклеотидная последовательность , генетическая последовательность — порядок следования нуклеотидных остатков в нуклеиновых кислотах. Определяется при помощи секвенирования.
Повторя́ющиеся после́довательности ДНК (англ. Repetitive DNA) — участки ДНК, включённые в геном, последовательность которых состоит из повторяющихся фрагментов. Выделяют 2 типа таких повторяющихся последовательностей...
Рекомбинация — перераспределение генетического материала (ДНК или РНК) путём разрыва и соединения разных молекул, приводящее к появлению новых комбинаций генов или других нуклеотидных последовательностей. В широком смысле слова включает в себя не только рекомбинацию между молекулами ДНК, но и перекомбинацию (сортировку) генетического материала на уровне целых хромосом или ядер, а также обмен плазмидами между клетками.
Плазми́ды (англ. plasmids) — небольшие молекулы ДНК, физически обособленные от хромосом и способные к автономной репликации. Главным образом плазмиды встречаются у бактерий, а также у некоторых архей и эукариот (грибов и высших растений). Чаще всего плазмиды представляют собой двухцепочечные кольцевые молекулы. Несмотря на способность к размножению, плазмиды, как и вирусы, не рассматриваются в качестве живых организмов.
Прокарио́ты (лат. Procaryota, от др.-греч. πρό ‘перед’ и κάρυον ‘ядро’), или доя́дерные — одноклеточные живые организмы, не обладающие (в отличие от эукариот) оформленным клеточным ядром и другими внутренними мембранными органоидами (таких как митохондрии или эндоплазматический ретикулум, за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий).
Локус (лат. locus — место) в генетике означает местоположение определённого гена на генетической или цитологической карте хромосомы. Вариант последовательности ДНК в данном локусе называется аллелью. Упорядоченный перечень локусов для какого-либо генома называется генетической картой.
Открытая рамка считывания (англ. Open Reading Frame, ORF) — последовательность нуклеотидов в составе ДНК или РНК, потенциально способная кодировать белок. Основным признаком наличия ORF служит отсутствие стоп-кодонов (в случае РНК — обычно UAA, UGA и UAG) на достаточно длинном участке последовательности после стартового кодона (в подавляющем большинстве случаев — AUG). Поскольку в некоторых случаях стартовый и терминирующие кодоны отличаются от канонических, а также ввиду возможности супрессии (подавления...
Транспозоны (англ. transposable element, transposon) — это участки ДНК организмов, способные к передвижению (транспозиции) и размножению в пределах генома. Транспозоны также известны под названием «прыгающие гены» и являются примерами мобильных генетических элементов.
Геном человека — совокупность наследственного материала, заключённого в клетке человека. Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две аутосомы, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд пар оснований.
Ретротранспозоны (мобильные генетические элементы первого типа, или транспозоны, перемещающиеся через РНК-интермедиаты) — это генетические элементы, которые могут самовоспроизводиться в геноме и являются вездесущими компонентами ДНК многих эукариотических организмов.
Экзон ы (от англ. ex(pressi)on — выражение) — участки ДНК, копии которых составляют зрелую РНК. По мнению некоторых исследователей экзоны соответствуют доменам (структурно автономным областям) в белке и являются первичными генетическими единицами, перекомбинация которых приводит к возникновению в ходе эволюции новых генов и соответственно новых белков. Экзоны чередуются в структуре гена с другими фрагментами — интронами. При альтернативном сплайсинге некоторые экзоны удаляются из зрелой РНК.
Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Некоторые этапы экспрессии генов могут регулироваться: это транскрипция, трансляция, сплайсинг РНК и стадия посттрансляционных модификаций белков. Процесс активации экспрессии генов короткими двуцепочечными РНК называется активацией РНК.
Дезоксирибонуклеи́но кислота́ (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.
Кле́точное ядро ́ (лат. nucleus) — окружённый двумя мембранами компартмент эукариотической клетки (в клетках прокариот ядро отсутствует). Обычно в клетках эукариот имеется одно ядро, однако некоторые типы клеток, например, эритроциты млекопитающих, не имеют ядра, а другие содержат несколько ядер.
Дупликация (лат. duplicatio — удвоение) — разновидность хромосомных перестроек, при которой участок хромосомы оказывается удвоенным. Может произойти в результате неравного кроссинговера, ошибки при гомологичной рекомбинации, ретротранспозиции.
Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.
Консервати́вные после́довательности (англ. conserved sequences) — схожие или идентичные последовательности, встречающиеся в биологических полимерах: нуклеиновых кислотах, первичной и пространственной структурах белков, полисахаридах как в пределах особей разных видов (ортологичные последовательности), так и в пределах одной особи (паралогичные последовательности). Ортологичные последовательности являются подтверждением того, что определённые последовательности могут поддерживаться эволюцией, несмотря...
Ретрови́русы (лат. Retroviridae, от лат. retro — обратный) — семейство РНК-содержащих вирусов, заражающих преимущественно позвоночных. Наиболее известный и активно изучаемый представитель — вирус иммунодефицита человека.
Нуклеоти́ды (нуклеозидфосфаты) — группа органических соединений, представляют собой фосфорные эфиры нуклеозидов. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов.
Интрон ы – участки ДНК, копии которых удаляются из первичного транскрипта и отсутствуют в зрелой РНК.
Транспортная РНК, тРНК — рибонуклеиновая кислота, функцией которой является транспортировка аминокислот к месту синтеза белка. Имеет типичную длину от 73 до 93 нуклеотидов и размеры около 5 нм. тРНК также принимают непосредственное участие в наращивании полипептидной цепи, присоединяясь — будучи в комплексе с аминокислотой — к кодону мРНК и обеспечивая необходимую для образования новой пептидной связи конформацию комплекса.
Генети́ческий код (англ. Genetic code) — совокупность правил, согласно которым в живых клетках последовательность нуклеотидов (ген и мРНК) переводится в последовательность аминокислот (белок). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един (имеются лишь незначительные вариации), что...
Промотор в генетике — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала транскрипции. Промотор играет одну из ключевых ролей в процессе инициации транскрипции.
Конъюга́ция (от лат. conjugatio — соединение) — однонаправленный перенос части генетического материала (плазмид или бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Джошуа Ледербергом и Эдвардом Татумом. Явление конъюгации было открыто и хорошо изучено у кишечной палочки (Escherichia coli), но в дальнейшем конъюгация была описана у множества как грамположительных, так и грамотрицательных бактерий. Посредством конъюгации бактерии обмениваются генетическим...
Протеом — совокупность белков организма, производимых клеткой, тканью или организмом в определённый период времени. Или, более строго, это совокупность экспрессированных белков в данном типе клеток или в организме, в данный период времени при данных условиях. Термин является производным слова «протеин» (белок), аналогичным по происхождению слову «геном» (совокупность всех генов организма).
Гомологичными (др.-греч. ὅμοιος «подобный, похожий» + λογος «слово, закон») в биологии называются сопоставимые части сравниваемых биологических объектов.
Подробнее: Гомология (биология)
Капси́д — внешняя оболочка вируса, состоящая из белков. Структурной субъединицей капсида является капсомер. Капсид выполняет несколько функций...
Доме́н (англ. domain, лат. regio), или надцарство — в биологической систематике самый верхний уровень (ранг) группировки организмов в системе, включающий в себя одно или несколько царств.
Метагено́мика — раздел молекулярной генетики, в котором изучается генетический материал, полученный из образцов окружающей среды. Метагеномика изучает набор генов всех микроорганизмов, находящихся в образце среды, — метагеном. Метагеномный анализ позволяет определить видовое разнообразие исследуемого образца без необходимости выделения и культивирования микроорганизмов.
Рибосо́ма — важнейшая немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК (мРНК). Этот процесс называется трансляцией. Рибосомы имеют сферическую или слегка эллипсоидную форму, диаметром от 15—20 нанометров (прокариоты) до 25—30 нанометров (эукариоты), состоят из большой и малой субъединиц.
Виро́иды (англ. Viroids) — инфекционные агенты, состоящие только из кольцевой РНК.
Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации в одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.Однако в 1970 году Темин...
Псевдогены (англ. pseudogenes) — нефункциональные аналоги структурных генов, утратившие способность кодировать белок и не экспрессирующиеся в клетке. Термин «псевдоген» был впервые предложен в 1977 году. Некоторые псевдогены могут копироваться из мРНК и включаться в хромосомы, такие последовательности называются процессированными псевдогенами (ретропсевдогенами). Тем не менее, они также нефункциональны. Псевдогены происходят от обычных функциональных генов, однако утрачивают способность экспрессии...
Некодирующая
ДНК или Мусорная ДНК (англ. Non-coding DNA англ. junk DNA) — части геномной ДНК организмов, которые не кодируют последовательности белков. Некоторые некодирующие ДНК переводятся в функциональные некодирующие РНК-молекулы. Другие функции некодирующей ДНК включают регуляцию последовательностей кодирующих белки, центромер и теломер.
РНК-интерференция (англ. RNA interference, RNAi) — процесс подавления экспрессии гена на стадии транскрипции, трансляции, деаденилирования или деградации мРНК при помощи малых молекул РНК.
Соматические клетки (др.-греч. σῶμα — тело) — клетки, составляющие тело (сому) многоклеточных организмов и не принимающие участия в половом размножении. Таким образом, это все клетки, кроме гамет.
Подробнее: Соматическая клетка
Спе́йсер ы (от англ. spacer — «разделитель») — участки нетранскрибируемой ДНК, расположенные между тандемно повторяющимися генами, например, между генами рибосомальной РНК у эукариот. Их функция, вероятнее всего, заключается в обеспечении высокого уровня точности транскрипции в связанных генах.
Трансду́кция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.
Нуклео́ид (англ. Nucleoid) — неправильной формы зона в цитоплазме прокариотической клетки, в которой находится геномная ДНК и ассоциированные с ней белки. На долю ДНК приходится около 60 % массы нуклеоида; помимо ДНК, нуклеоид содержит РНК и белки. Белки нуклеоида, которые обеспечивают пространственную организацию геномной ДНК, называют нуклеоидными белками или нуклеоид-ассоциированными белками; они не имеют ничего общего с гистонами, упаковывающими ДНК у эукариот. В отличие от гистонов, ДНК-связывающие...
Эндоге́нные ви́русные элеме́нты (англ. Endogenous viral elements) — последовательности ДНК вирусного происхождения в геноме невирусных организмов, которые присутствуют в клетках зародышевой линии и передаются по наследству. Иногда эндогенные вирусные элементы представлены полными вирусными геномами (провирусами), в других случае они являются фрагментами вирусных геномов. Провирусы могут сохранять потенциальную способность вызывать инфекцию, опосредуя образование новых вирусных частиц. При удвоении...
Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать транскрипцию этих генов.
Изоформа белка — любая из нескольких разных форм одного и того же белка. Различные формы белка могут быть образованы связанными генами, или могут возникнуть из того же гена путём альтернативного сплайсинга. Большое количество изоформ вызваны однонуклеотидными полиморфизмами — небольшими генетическими различиями между аллелями одного и того же гена. Это происходит в определенных отдельных местах расположения нуклеотидов на гене.
Сплайсинг (от англ. splice — сращивать или склеивать концы чего-либо) — процесс вырезания определённых нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании матричной, или информационной, РНК (мРНК) у эукариот, при этом путём биохимических реакций с участием РНК и белков из мРНК удаляются участки, не кодирующие белок (интроны) и соединяются друг с другом кодирующие...
Упоминания в литературе (продолжение)
Размер
генома , определяемый количеством ДНК (измеряется числом пар, образующих ДНК нуклеотидов, или в единицах массы), изменялся в ходе эволюции и различен у разных групп организмов. Геном бактерий состоит в среднем из 106 пар нуклеотидов, грибов – из 107 пар, геном большинства животных и многих растений – из 109 нуклеотидных пар. У значительной части семенных растений, а также у саламандр и некоторых древних рыб он достигает размера в 1010 пар нуклеотидов. Геном человека включает примерно 3 млрд. (3·109) пар нуклеотидов. Хотя у более продвинутых групп геном обычно больше, чем у их эволюционных предшественников, прямого и однозначного соответствия между сложностью организма и размером генома нет.
Как оказалось, все опухолеродные вирусы в своем
геноме содержат специфические последовательности нуклеотидов, ответственные за способность превращать нормальные клетки в опухолевые. Эти последовательности нуклеотидов получили название онкогены, так как кодируемые этими генами белки необходимы для трансформации клетки. Чаще всего вирусы содержат 1—2 таких гена в своем геноме. А всего известно на сегодняшний день около 30 вирусов онкогенов. Американские исследователи R. Hubner и О. Todaro в 1972 г. впервые высказали предположение, что вирусные онкогены имеют клеточное происхождение. И действительно оказалось, что онкогены не являются исходно присущими вирусам, а захвачены ими из генома тех клеток, в которых они обитали. Сейчас клеточное происхождение вирусных онкогенов является общепринятым и никем не оспаривается. Аналоги всех вирусных онкогенов были обнаружены в клеточных геномах самых различных клеток – от дрожжевых до человека. Клеточные аналоги вирусных онкогенов в нормальных клетках из-за своей неактивности названы «молчащими» генами, или протоонкогенами. Общее число генов человека примерно 100 тыс. Полагают, что среди них имеется около 100 истинных протоонкогенов. Функция клеточных протоонкогенов в нормальных клетках недостаточно ясна, хотя все исследователи соглашаются, что эти гены выполняют какую-то важную биологическую функцию в клетках. Преобладает мнение, что эти гены активны в процессе дифференциации и развития клеток, что они регулируют синтез белка, необходимого для роста и деления клеток.
Существование генетического типа вертикального распространения ретровирусов было подтверждено многими фактами. По общей структуре
генома ретровирус присутствует в виде ДНК-провирусов. В генетических экспериментах провирусы ретровирусов подчиняются законам Менделя. Они функционируют как часть генома нормального организма, находятся в нем в метилированном состоянии. С этим в значительной мере связывают их поведение как «молчащих» репрессированных генов.
Генотип представляет собой полный набор
генов , переданный биологическими родителями; он заложен в хромосомах всех клеток новорожденного и материализован в виде дезоксирибонуклеиновой кислоты (ДНК). Этот генетический комплекс, по современным представлениям, состоит примерно из 25 тыс. генов, контролирующих синтез всех белков организма.
Еще один актуальный вопрос: насколько последовательности ДНК различаются между живыми организмами? Насколько похожи
гены человека и шимпанзе? Гены человека и банана? Степень сходства (доля совпадающих нуклеотидов) будет варьировать в зависимости от выбранного участка ДНК. Ниже показаны сравнения (нуклеотидные выравнивания) генов, кодирующих белок гистон H1 человека и шимпанзе, а также человека и банана (звездочками помечены совпадающие нуклеотиды; знаками “-” – отсутствующие). Гистоны – это белки, на которые “наматывается” ДНК, чтобы компактно упаковаться в ядре. Это очень древние белки, возникшие на заре эволюции, необходимые для жизни всем эукариотам. Поэтому степень сходства между организмами по генам этого белка выше среднего – мутации в этих генах чаще всего вредны.
Новое тысячелетие началось с события, вызвавшего удивление. Две научные публикации изменили наш взгляд на мир. В одной из этих статей показано, что вирусы составляют половину всего нашего генетического материала, нашего
генома , всех наших генов, а во второй речь идет о том, что микроорганизмы доминируют везде – вокруг и внутри нас. Обе эти публикации основаны на новой, появившейся в конце прошлого века технологии секвенирования – определения последовательностей крупных геномов, в частности генома человека. В первой из этих двух публикаций, которая появилась в 2001 г., описано определение последовательностей наших генов, состоящих из 3,2 млрд пар строительных блоков – нуклеотидов. Это было результатом огромных усилий и многомиллионного финансирования. Никто не представлял, из чего, собственно, состоит наш геном. Ответ – из вирусов. Геном человека почти наполовину состоит из вирусов или по крайней мере вирусных последовательностей, «недовирусов», или остатков древних вирусов, населяющих наш геном миллионы лет. Вполне возможно, что гены прочих организмов могут содержать до 85 % вирусных последовательностей. А где предел? 100 %? Далее мы вернемся к этому вопросу. Еще более удивителен тот факт, что эти вирусоподобные элементы могут перемещаться, они могут «прыгать» и наши геномы постоянно меняются. Еще один удивительный факт: все геномы всех особей на планете взаимосвязаны. На генетическом уровне мы все родственники: мухи и прочие насекомые, водоросли и планктон, черви и даже пекарские дрожжи, бактерии, растения, грибы и так далее до человека, и конечно, вирусы, поскольку они являются «поставщиками» многих генов.
Оказалось, что внутриклеточные «корпускулы», о которых упоминал Дарвин, это не какие-то представители органов и тканей в половых клетках, а
гены , кодирующие структуру и функции в клетках и, в конечном итоге, во всем организме и находятся эти гены в ядрах не только половых клеток, но и всех остальных соматических клеток. Именно они являются носителями наследственности. Каждый ген ответственен за четко определенную часть в сложном комплексе жизнедеятельности клетки. В каждой клетке генов насчитывают сотни и тысячи.
После оплодотворения яйцеклетки сперматозоидом образуются зигота. Она содержит генетический материал, состоящий из материнских и отцовских
генов , которые затем передаются при делении дочерним клеткам. Сумма всех генов зиготы и образующихся из нее клеток составляет геном, характерный только для данного вида организма, а особенности сочетания материнских и отцовских генов у данной особи составляют ее генотип. Следовательно, любая клетка, образующаяся из зиготы, содержит одинаковый по количеству и качеству генетический материал, т. е. одинаковые геном и генотип (исключением являются только половые клетки, они содержат половинный набор генома).
Вирусы имеют свою эволюционную историю, в определенной степени независимую от эволюции организмов, в которых они реплицируются. В то же время вирусы активно участвуют в эволюции животных и человека. Генетический материал вирусов в химическом отношении сходен с генетическим материалом всех клеток. Участие вирусов в эволюции высших организмов осуществляется благодаря широкому распространению и интеграции вирусного
генома в геном хозяина, что способствует захвату и внедрению части генетической информации одного организма в генетический аппарат другого. Сейчас накопилось значительное число работ, подтверждающих, что вирусы как один из факторов эволюции участвуют в мутации и рекомбинации генетического аппарата клеток человека. Известна способность многих вирусов встраиваться в человеческий геном и сохраняться в нем на протяжении многих лет без каких-либо видимых последствий для организма. Обнаружены около 500 ретровирусов, интегрированных в геном человека. Точные последствия такой интеграции большинства известных ретровирусов для человечества неизвестны, но нельзя исключить, что эти вирусы способствовали отделению человека как самостоятельного вида Ноmо sapiens от линии развития остальных гоминид.
АЛЛЕ́ЛЬ, один из возможных структурных вариантов
гена . Аллели (аллельные гены) расположены в определённых участках гомологичных хромосом и определяют развитие одного из альтернативных вариантов какого-либо признака. В конкретном диплоидном организме не может быть более двух аллелей, составляющих аллельную пару. Напр., в знаменитых опытах Г. Менделя по скрещиванию гороха гладкую форму семян определял доминантный аллель (обозначается А), а альтернативный признак – морщинистую форму – рецессивный аллель (обозначается а). Половые клетки содержат какой-либо один из двух аллелей. Хотя для большинства генов известно лишь два аллеля, их число теоретически безгранично. Каждая новая мутация изменяет структуру исходного гена (гена «дикого» типа), т.е. приводит к появлению нового аллеля, который обычно определяет и несколько иной вариант признака. Возникновение серии таких аллелей, контролирующих варианты развития признака, получило название множественного аллелизма (разные аллели могут определять как различные, так и одинаковые варианты признака). Существование в популяции организмов нескольких аллелей одного гена обеспечивает её генетическое разнообразие и имеет важное адаптивное значение. См. также Доминантность, Рецессивность, Гетерозигота, Гомозигота.
Исследования также показывают, что трихомонада прошла длительный эволюционный путь, на протяжении которого она заимствовала
гены прежде всего у прокариот (кишечных бактерий). По этой причине в геноме трихомонады преобладают гены ферментов, участвующих в метаболизме углеводов и аминокислот, а также гены, кодирующие белки, всевозможные мобильные генетические элементы (в частности, встроенные фрагменты вирусных геномов, транспозоны, ретротранспозоны). На практике это привело к тому, что в последнее столетие геном трихомонады значительно увеличился в результате удвоения некоторых крупных фрагментов, иными словами, для пущей приспособленности к паразитическому образу жизни у трихомонады многократно увеличилось количество генов, необходимых для заглатывания отдельных белковых молекул и целых клеток организма хозяина. Это означает, что трихомонада еще не окончательно приспособилась к паразитированию в мочеполовых путях человека.
Представитель рода Morbillivirus, или MeV, – сложно организованный вирус, его диаметр составляет от 150 до 350 нм (рис. 1), это наиболее крупный РНК-содержащий вирус человека и животных. Белковый капсид вируса устроен по икосаэдрическому типу симметрии и содержит
геном , представленный одной линейной отрицательной нитью рибонуклеиновой кислоты (РНК) – 1Н(–)РНК.
Классифицируют мутации по различным основаниям: по уровню организации генетического материала (ген, хромосома, геном), по месту возникновения (половые или соматические клетки), по характеру проявления (рецессивные или доминантные), по влиянию на организм (полезные или вредные, в т.ч. летальные, т.е. приводящие к гибели организма), в зависимости от причин (спонтанные или индуцируемые). Изменения структуры генетического материала могут происходить на трёх основных уровнях его организации. Генные, или точковые, мутации заключаются в нарушении строения одного
гена (участка ДНК) в результате выпадения, вставки или изменения химического строения пары нуклеотидов. Хромосомные мутации (хромосомные перестройки, или аберрации) связаны с изменениями структуры хромосом при утрате отдельных участков, их удвоении, перемещении, перевороте на 180° и т.д.
Клетка, содержащая профаг в
геноме , называется лизогенной и отличается от исходной наличием дополнительной генетической информации за счет генов профага. Это явление лизогенной конверсии.
Как и большинство других
генов , ламин-А состоит из экзонов, то есть участков ДНК. Эти участки кодируют ту или иную часть аминокислотной последовательности белка. Также в составляющую ламина-А входят интроны, так называемые некодирующие участки. В процессе первичного «прочтения» генетической информации и образуется молекула РНК, она является полной копией гена. Далее происходит удаление интронов и «сшивание» экзонов в одну взрослую матричную РНК. Она в дальнейшем используется и как «инструкция» для синтеза белка.
Что касается опухолевых
генов – супрессоров (антионкогены), необходимо знать, какой из них является самым важным. Это так называемый ген p53, или «хранитель генома». Как мы уже говорили выше, важно, чтобы геном клетки оставался неизменным. Мы также видели, что есть система чтения этого генома, двух нитей ДНК, и при обнаружении аномалии осуществляется процесс восстановления.
До работ Т Чека и С. Олтмэна ни у одного биохимика не возникало и тени сомнения в том, что биологическими катализаторами могут быть только белки. Правда еще в 60-х гг. XIX в. Ф. Крик, Л. Оргел и К. Возе предполагали, что на ранних этапах эволюции рибонуклеиновая кислота (РНК) могла быть ферментом, т. е. обладать этим свойством. В конце 1970-х гг. было выяснено, что многие
гены (особенно у эвкариот) построены мозаично. Они состоят из экзонов (значащих участков) и интронов (соединяющих экзоны, в которых для данного гена не содержится осмысленной информации. Антисмысловые РНК регулируют активность генов. В ходе процессинга особого типа, получившего название сплайсинг, интронные участки РНК вырезаются, а экзонные сшиваются друг с другом в строго определенных местах и в строго определенном порядке. Как правило, сплайсинг обслуживают специальные белки-ферменты, одни из которых разрезают, а другие сшивают полинуклеотидные цепи РНК.
Молекулярные болезни – обширная группа заболеваний, природа которых связана с повреждением отдельных
генов . Сейчас известно более 2500 молекулярных болезней. Причиной данной патологии являются генные (точечные) мутации, т. е. изменения последовательности нуклеотидов в молекуле ДНК.
Встречаются и другие формы генетически детерминированных дислипидемий, например, комбинированная гиперлипидемия, при которой повышен уровень и ХС, и ТГ. Этот вид ДЛП (ГЛП) возникает в результате мутации
гена , контролирующего синтез транскрипционной ДНК, которая описана под названием Upstream Stimulatory Factor (USF-1). Это также моногенная мутация, при которой главным образом нарушается элиминация ЛПОНП, а значит и ТГ, из циркулирующей крови. Впервые данная мутация была идентифицирована в Финляндии и в своем гетерозиготном варианте, по-видимому, обусловливает ГТГ у лиц с метаболическим синдромом. Авторы, описавшие эту мутацию [P. Pajukanta et al., 2004], рассматривают USF-1 как регулятор работы других генов, который посредством РНК кодирует синтез ряда белков – участников обмена и транспортировки апопротеинов А-2, С-3, Е, АВСА-1 и др.
В той мере, в какой это касается
гена , его аллели – это его злейшие соперники, тогда как другие гены – это лишь часть его среды, подобно температуре, пище, хищникам или компаньонам. Эффект данного гена зависит от его среды, а в нее входят другие гены. Иногда данный ген характеризуется одним эффектом в присутствии какого-то определенного гена и совсем другим в присутствии иного набора генов. Весь набор генов данного организма образует своего рода генетический климат, или фон, изменяющий эффекты каждого отдельного гена и влияющий на них.
Геном даже самых простых бактерий состоит из более чем миллиона нуклеотидов и кодирует свыше тысячи белков. Иными словами, бактериальная клетка содержит мегабайты информации. Для работы этого генома требуются специальные молекулярные машины сборки белков, копирования ДНК, энергоснабжения и средства регуляции и управления. Сложность такой системы очень высока, а более простых самостоятельно размножающихся систем биология не знает. Вирусы не в счет – для их размножения требуется сложная живая клетка. Мы знаем только один путь происхождения более сложных систем из простых – это эволюция по Дарвину, путем естественного отбора. Но чтобы началась эволюция, нужны какие-то единицы живого, способные к размножению. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время – на много порядков больше возраста Вселенной. Эта проблема называется «неупрощаемая сложность» (irreducible complexity). Астрофизик Фред Хойл охарактеризовал ее при помощи аналогии: «случайное самозарождение жизни так же вероятно, как случайная сборка „Боинга-747“ при прохождении урагана через мусорную свалку».
Рост опухоли начинается не из одной клетки (как это предполагается в теории мутации), а из определенной части ткани. Следовательно, перерождения в мембранах и неполноценность антиоксидантных систем являются первичными, а в ДНК митохондрий последствия вторичны. Цикл развития клеток становится усеченным, работают только примитивные древние генные программы. Все это сбивает с толку исследователей и заставляет искать причину нарушений на генетическом уровне – в
геноме ядра клетки. И там действительно «находят» такие онкогены, например, р53 и др. Они описаны, изучены, но являются отражением, вторичной перестройкой, результатом устойчивых изменений на митохондриально-мембранном уровне. Митохондрии имеют свои ДНК, но их предназначение заключается в регулировании энергетического процесса в цикле Кребса. ДНК митохондрий существенно отличается от ДНК в ядре.
На уровне молекул. Главной для нас молекулой является ДНК, которая представляет собой последовательную совокупность
генов . А. Чижевским, В. Стадольником, Б. Хвистендалем был собран научный материал, показывающий зависимость мутаций вирусов от солнечной активности. Но вирус в своей сути является одним геном, окружённым белковой оболочкой. Следовательно, молекула ДНК подвержена такому воздействию. По мнению А. Чижевского бактерии являются резонаторами электромагнитных колебаний.
Все
гены , являющиеся частью какой-либо структурной цепочки, называются хромосомами. Хромосомы крысы парные, и увидеть их можно только с помощью микроскопа.
Специфическое вещество, образуемое в листьях в ответ на благоприятный фотопериод и передвигающееся в апикальную меристему, было идентифицировано лишь через много лет после смерти М. Чайлахяна, в 2005–2007 гг. (Abe et al., 2005; Wigge et al., 2005; Huang et al., 2005; Corbesier et al., 2007; Tamaki et al., 2007). Для его обнаружения потребовались совместные усилия генетиков, биохимиков и физиологов растений. К удивлению многих, этим веществом оказалась не малая молекула типа обычного фитогормона, а небольшой белок, названный (у арабидопсиса) Flowering Locus Т (FT). Доказано, что, в полном согласии с теорией флоригена, этот белок образуется в листьях в ответ на благоприятный для цветения фотопериод, далее по флоэме перемещается в стеблевой апекс, где в комплексе с фактором транскрипции bZIP-типа FD активирует
гены идентичности флоральной меристемы. Белки FT-типа обнаружены у самых разных видов растений (арабидопсис, рис, томат, рапс, тыква и др.) и их действие оказалось видонеспецифичным, т. е. экспрессия белков FT одного вида стимулировала цветение растения-реципиента другого вида. В соответствии со всеми этими характеристиками мы можем с полным основанием считать белки FT белковыми гормонами растений – индукторами цветения (Аксенова, Константинова, 2007; Ауге, 2010).
Генетическая программа всех живых организмов, за исключением РНК-содержащих вирусов, записана в нуклеотидной последовательности ДНК. Следовательно, для сохранения уникальных свойств организма необходимо точное воспроизведение этой последовательности в каждом последующем поколении. Е. соli, например, должна дуплицировать практически без ошибок полный
геном размером 4·106 нуклеотидных пар при образовании каждого последующего поколения; точно так же должны быть скопированы почти 4·109 пар оснований в 23 парах хромосом человека при каждом акте деления клеток. Основным свойством ДНК является то, что она служит матрицей и определяет порядок, в котором нуклеотиды выстраиваются в новые полинуклеотидные нити.
Геном исходного биологического таксона (с множеством заложенных возможностей и вариантов развития признаков) просто распадается на несколько разных, более «узких» вариантов генома, которые уже имелись внутри исходного (предкового) генома. Понятно, что в этом случае правильнее будет говорить не об «эволюции», а о «псевдо-эволюции», которая не производит, а лишь имитирует появление эволюционных изменений. Такая «псевдоэволюция» может идти только по механизму распада геномов с изначально большими потенциальными возможностями, в сторону всё более «узких» и «конкретных» вариантов геномов, со всё меньшими способностями к демонстрации «новых признаков».